Electronic Supplementary Information

In situ creation of catalytic multiphase and multiscale surroundings

for remarkable hydrogen storage performance of MgH₂

Lingchao Zhang,^a Xin Zhang,^{ab} Wenxuan Zhang,^a Fang Fang*^c, Juan Li^d, Jianjiang Hu^e, Changdong Gu^a, Wenping Sun^a, Mingxia Gao^a, Hongge Pan*^{af}, Yongfeng Liu*^{abf}

^aState Key Laboratory of Silicon and Advanced Semiconductor Materials and Engineering, Zhejiang University, Hangzhou 310058, China. E-mail address: mselyf@zju.edu.cn

^bTaizhou Institute of Zhejiang University, Taizhou 318000, China.

^cDepartment of Materials Science, Fudan University, Shanghai, 200433 China. E-mail address: f fang@fudan.edu.cn

^dCollege of Materials Science and Engineering, Zhejiang University of Technology,

Hangzhou, 310014, China

eSchool of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China

^fInstitute of Science and Technology for New Energy, Xi'an Technological University,

Xi'an, 710021, China. E-mail address: hgpan@zju.edu.cn

Fig. S1. Isothermal desorption curves of the sample with 10 wt% nano-ZrFe₂ at 200 °C and 250 °C.

Fig. S2. Isothermal hydrogenation curves of the dehydrogenated sample with 10 wt% nano-ZrFe₂ at 100 °C and 200 °C.

Table S1. The weight and atomic percentage of Mg, Zr and Fe calculated fromEDS results shown in Fig. 4

		10 wt% nano-	10 wt% nano-	10wt% bulk-	10wt% bulk-
Element	Line type	ZrFe ₂	ZrFe ₂	ZrFe ₂	ZrFe ₂
		(wt%)	(mol%)	(wt%)	(mol%)
Mg	K-line	89.38	95.90	90.97	96.45
Fe	K-line	5.86	2.74	5.58	2.58
Zr	L-line	4.76	1.36	3.45	0.97
Amount		100	100	100	100

Fig. S3. The particle size distribution of nano-ZrFe₂ after ball milling shown in Fig. 4b

Fig. S4. TPD curves (a) and post-fitted Kissinger's plots (b) of $MgH_2 + 10$ wt% bulk-ZrFe₂ sample under different heating rates.

Fig. S5. TEM (a), HAADF (b), HRTEM (c) images and corresponding EDS mappings (d-f) of the hydrogenated $MgH_2 + 10$ wt% nano-ZrFe₂ composite. The inset of (a) is Fe particles size distribution.

Fig. S6. Low-magnification TEM image of the $MgH_2 + 10 wt\%$ nano-ZrFe₂ composite dehydrogenated at 250 °C. The marked-out area is the particle shown in Fig. 8.

Fig. S7. XRD pattern of the nano-ZrFe₂-containing sample after 10 cycles.

Fig. S8. Comparative analysis of isothermal hydrogen desorption (a) and absorption (b) curves during cycling at 250 °C of the $MgH_2 + 10$ wt% nano-ZrFe₂ powder sample.

Fig. S9. Isothermal hydrogen absorption and desorption cycling curves at 250 °C (a) and the cycling capacity (b) of the $MgH_2 + 10$ wt% nano-ZrFe₂ pellet sample.

Fig. S10. Comparative analysis of isothermal hydrogen desorption (a) and absorption
(b) curves during cycling at 250 °C of the MgH₂ + 10 wt% nano-ZrFe₂ pellet sample.

Fig. S11. SEM images and EDS mappings of Mg, Zr and Fe for the as-milled (a, c) and the 10^{th} hydrogenated MgH₂ + 10 wt% nano-ZrFe₂ samples (b, d) in powder form (a, b) and cold-pressed pellet (c, d).