Supporting information

Enhanced Sodium Ion Storage in MnO² through Asymmetric Orbital HybridizationsInduced

by Spin-Paired Ion Doping

Jinrui Wang^{a,1}, Xia Liu^{a,1}, Zishan Hou^a, Shiyu Wang^a, Shuyun Yao^a, Xueying Gao^a, Yuanming Liu^a, Kaiqi Nie^c,

Jiangzhou Xie^{b,*}, Zhiyu Yang^{a,*}, Yi-Ming Yan^{a,*}

¹ These authors contributed equally to this work.

a State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China ^b School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia

^c Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China

Corresponding authors.

E-mail: yanym22@mail.buct.edu.cn;

yangzhiyu@mail.buct.edu.cn;

jiangzhou.xie@unsw.edu.au

Experimental Procedures

Chemicals and reagents

 $Mn(NO₃)₂$ and Tetramethylammonium hydroxide (TMA \cdot OH) were obtained from Shanghai Macklin Biochemical Co., Ltd. SnCl₄.5H₂O was obtained from Innochem. H₂O₂ was purchased from Beijing Chemical Works. Anhydrous (Na₂SO₄) was purchased from Beijing Tong Guang Fine Chemicals Company. All reagents were used as received without further purification. And all solutions were prepared using ultrapure water (resistance = 18.2 MΩ cm).

Characterization of the sample

Microstructure were studied using scanning electron microscopy (SEM, FEI Quanta 200) at 20 kV, transmission electron microscopy (TEM; FEI Tecnai G2 20) and HRTEM (JEOL, JEM-2100, 200 kV). The electronic structure and compositional information on the samples were investigated by X-ray photoelectron spectroscopy (XPS, ESCALAB 250). The band gap of the materials were determined by UV-vis adsorption spectroscopy (Varian Cary 6000i) in the wavelength range of 250-800nm. JEOLJESFA200 EPR spectrometer was used to obtain the electron paramagnetic resonance (EPR) spectra, and operating parameters were 140K, 9064 MHz, 0.998 mW, X-band. The soft-XAS measurements were carried out in total electron yield mode under ultra-high vacuum at beamline 4B9B of Beijing Synchrotron Radiation Facility of the Institute of High Energy Physics, Chinese Academy of Sciences. Au $4f_{7/2}$ core level spectra were recorded for the photon energy calibration, and the energy resolution is better than 0.2 eV at room temperature. The electrochemical operando Cell (EC-RAIR-H) is supplied by Beijing Science Star technology Co. Ltd. The Raman spectrum was recorded on a HORIBA Raman microscope with a laser wavelength of 532 nm (LabRAM Aramis, HORIBA Jobin Yvon S.A.S, France) for surface characterization. Raman spectra of the sample (one spectrum per 30 s) were captured while a cyclic voltammetry test at a scan rate of 2 mV s⁻¹ simultaneously.

Electrochemical measurements

Working electrode was prepared by traditional slurry-coating method. 80 wt% active material, 10 wt% acetylene black and 10 wt% polytetrafluoroethylene (PTFE) was mixed and coated onto carbon cloth with an area of 1 cm². The electrode was then heated at 60 °C for 2 hours to evaporate the solvent and used as working electrode. The negative electrode was prepared by mixing active carbon, acetylene black and PTFE with a mass ratio of 8:1:1. Electrochemical measurements were conducted in a general three-electrode configuration in 1.0

M Na₂SO₄ aqueous electrolyte with Ag/AgCl and a Pt foil as reference electrode and counter electrode, respectively. Cyclic voltammetry (CV) and galvanostatic charge discharge (GCD) experiments were performed to determine the electrochemical properties of the electrodes in a potential window of -0.1 to 0.9 V. All the operating current densities were calculated based on the mass of the active materials Electrochemical impedance spectroscopy (EIS) measurements were carried out by applying an AC voltage with 5 mV amplitude in a frequency range from 0.01 Hz to 100 kHz at open potential.

The specific capacitance C (F g^{-1}) was calculated based on the GCD curves according to equation ¹:

$$
C = \frac{I \times \Delta t}{m \times V}
$$
 (S1)

where I (A) and Δt (s) are the discharge current and time, respectively, m (g) represents of the active material's loading mass and V refers to the charge/discharge potential window.

Sodium diffusion coefficient calculation

The diffusion coefficient of Na⁺ (D_{Na}+) can be obtained from the low frequency line according to the equation ²:

$$
D_{Na}^{+} = 0.5(RT/AF^{2}C\sigma)^{2}
$$
 (S2)

where R, T, F, A, and C are the gas constant, the absolute temperature, the Faraday's constant, the apparent area of the electrode, and the molar concentration of Na⁺, respectively. σ is the Warburg factor following Equation:

$$
Z = Re + Rct + \sigma \omega^{-\frac{1}{2}}
$$
 (S3)

where R_e is the resistance between the electrolyte and electrode, and R_{ct} is the charge transfer resistance. Thus, the slopes of the plot of Z'vs $ω^{-1/2}$ can used to obtain the values of σ.

Kinetic calculation

Capacitance contribution can be qualitatively analysed according to CV curve, as shown below 3 :

$$
i = av^b
$$
 (S4)

where i and v are the current density and the potential scan rate, respectively, α is a constant and b is a tunable parameter with a value of 0.5-1.0. When the value of b is close to 1.0, the reaction process is dominated by surface capacitance; when the value of b is close to 0.5, the reaction process is dominated by diffusion control.

The contribution of capacitance and diffusion limit to the total capacitance is further quantified 4 .

$$
i(V) = k_1 v + k_2 v^{1/2}
$$
 (S5)

where k_1 and k_2 represent capacitive and diffusion contributions, respectively. By determining both k_1 and k_2 , it is thus possible to distinguish the fraction of the current arising from Na⁺ insertion and that from capacitive processes at specific potentials.

Supercapacitor devices measurements

Supercapacitor Devices Measurements: Asymmetric supercapacitor (ASC) device was fabricated by employing Sn-MnO₂ and AC as cathode and anode, respectively. Two electrodes were separated by glassy fibrous separator in 1 M Na₂SO₄ aqueous electrolyte. Cyclic voltammetry (CV) and galvanostatic charge/discharge (GCD) measurements were performed in a potential window of -0.1 to 0.9 V.

The energy density (E, Wh kg⁻¹) of the ASC is calculated according to S6⁵:

$$
E = \frac{C \times V^2}{2} \times \frac{1000}{3600}
$$
 (56)

The power density (P, W kg⁻¹) of the ASC is calculated according to S7⁶:

$$
P = \frac{E \times 3600}{t}
$$
 (S7)

where t (s) is discharge time.

DFT Methods

We have employed the Vienna Ab initio Simulation Package (VASP) to perform all density functional theory (DFT) calculations within spin-polarized frame. The elemental core and valence electrons were represented by the projector augmented wave (PAW) method and plane-wave basis functions with a cutoff energy of 520 eV. Generalized gradient approximation with the Perdew-Burke-Ernzerhof (GGA-PBE) exchange-correlation functional was employed in all the calculations. The DFT-D3 empirical correction method was employed to describe van der Waals interactions. Geometry optimizations were performed with the force convergency smaller than 0.07 eV/Å. Monkhorst-Pack k-points of 1×1×1 was applied for all the calculations. To overcome this shortcoming, the GGA+U approach was used with U-J = 3.9 eV for the Mn atoms.

Supporting figures

Fig. S1 (a) SEM image and (b) TEM image of MnO_2 , (c) SAED image of MnO_2 .

Fig. S2 XPS spectra: O 1s of $Sn-MnO₂$ and $MnO₂$.

Fig. S3 (a, b) CV curves of Sn-MnO₂ and MnO₂ samples at different scan rates from 5-200 mV s⁻¹. (c) GCD curves at different current densities of $MnO₂$ sample.

Fig. S4 (a) CV curves of MnO₂ at different scan from 1-6 mV s⁻¹. (b) The linear fitting curves of log (i) versus log (v) according to the CV results in (a). (c) Diffusion contributions and capacitive contributions of MnO_2 .

Fig. S5 Pseudocapacitive fraction (shown by the shaded area) calculated at a scan rate of 1-6 mV s⁻¹ from CV curves at different scan rates of (a, b, c, d, e, f) Sn-MnO₂ electrode.

Fig. S6 Pseudocapacitive fraction (shown by the shaded area) calculated at a scan rate of 1-6 mV s⁻¹ from CV curves at different scan rates of (a, b, c, d, e, f) $MnO₂$ electrode.

Fig. S7 Diagram of Z' and ω−1/2 in the low frequency zone obtained from EIS measurement and the calculated diffusion coefficient of $Sn-MnO₂$ and $MnO₂$.

Fig. S8 (a, b) Cycling stability of Sn-MnO₂ electrode and MnO₂ electrode at a current density of 1 A g⁻¹.

Fig. S9. HRTEM images of cycled MnO₂ and Sn-MnO₂ cathode materials.

Fig. S10. Ex-situ XRD patterns of MnO₂ and Sn-MnO₂.

Fig. S11. The assembled prototype of the supercapacitor.

Fig. S12 The top view (above) and side view (below) of optimized structure for (a) undoped Sn-MnO₂ and (b) MnO₂. Color codes: Mn, purple; O, pink; Sn, grey, respectively.

References

- 1. M. Jana, P. Samanta, N. C. Murmu and T. Kuila, *Chem. Eng. J.*, 2017, **330**, 914-925.
- 2. S. Wang, R. Zhao, S. Yao, B. Li, R. Liu, L. Hu, A. Zhang, R. Yang, X. Liu, Z. Fu, D. Wang, Z. Yang and Y.-M. Yan, *Journal of Materials Chemistry A*, 2021, **9**, 23506-23514.
- 3. S. Wang, L. Li, Y. Shao, L. Zhang, Y. Li, Y. Wu and X. Hao, *Adv Mater*, 2019, **31**, e1806088.
- 4. C. Zhao, C. Yu, M. Zhang, H. Huang, S. Li, X. Han, Z. Liu, J. Yang, W. Xiao, J. Liang, X. Sun and J. Qiu, *Adv. Energy Mater.*, 2017, **7**, 1602880.
- 5. A. Zhang, R. Gao, L. Hu, X. Zang, R. Yang, S. Wang, S. Yao, Z. Yang, H. Hao and Y.-M. Yan, *Chemical Engineering Journal*, 2021, **417**.
- 6. Y. Bai, B. Shen, S. Zhang, Z. Zhu, S. Sun, J. Gao, B. Li, Y. Wang, R. Zhang and F. Wei, *Adv. Mater.*, 2019, **31**, 1800680.