Supporting Information

Optimizing the gradient of electric field distribution and inhibiting charge injection in multilayer dielectric films for high capacitive performance

Zhicheng Li^a, Yu Zhang^d, Zhongbin Pan^{a,*}, Xu Fan^a, Peng Li^b, Haiming Huang^{d*}, Weiliang Wang^e,

Weidong Chenf, Jinjun Liu^a, and Weiping Li^{c,*}

^aSchool of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang,

315211, China. E-mail: panzhongbin@163.com (Zhongbin Pan).

^bSchool of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, China.

^cDepartment of Microelectronics Science and Engineering, School of Physical Science and Technology and Laboratory of Clean Energy Storage and Conversion, Ningbo University, Ningbo, Zhejiang, 315211, China. E-mail: liweiping@nbu.edu.cn (Weiping Li)

^dSolid State Physics & Material Research Laboratory, School of Physics and Materials Science, Guangzhou University, Guangzhou 510006, China. E-mail: huanghm@gzhu.edu.cn (Haiming Huang).

^eSchool of Physics, Guangdong Province Key Laboratory of Display Material and Technology, Sun Yat-sen University, Guangzhou 510275, China.

^fInstitute of Corrosion Science and Technology, Guangzhou, Guangdong, 510530, China.

Experimental

Materials

P(VDF-HFP) powders were purchased from Poly K. Ni(NO₃)₂·6H₂O (99 %) powders, 1,4benzenedicarboxylic acid (1,4-H₂BDC 99 %), N, N-dimethylformamide (DMF, 99.5 %) and acetonitrile (C₂H₃N, 99.9 %) were purchased from Shanghai Maclean Biochemical Co.

Characterization

The crystal structure of the composite materials was obtained by X-Ray Diffraction (XRD) on a D8 Advance X-ray diffractometer. The dielectric properties of all samples were measured by an LCR (TH 2838A, Changzhou Tonghui Electronics Co., Ltd., China) in the range of 10^3 to 10^6 Hz. The polarization-electric field (*P*-*E*) loops were measured by the Premier II Ferroelectric test system (Poly *K*). The fast discharge tests were performed using a CF-003 test system (Instruments Technology, China).

Figure S1. The preparation process of multilayer composite films.

Figure S2. The XRD image of P(VDF-HFP), Ni-MOF/ P(VDF-HFP), and PESU.

Figure S3. The work function of PESU.

Figure S4. The *P*-*E* loops of PESU, PP-0, PP-1, PP-2, PP-3, PP-4, and P(VDF-HFP) under different electric fields.