Supporting Information

Surface Engineering Based on Ionic Liquids for Efficient and Stable CsPbI₃ Perovskite Solar Cells

Dong Rui,^{a,#} Jianfei Fu,^{b,#} Qiaoyun Chen,^a Ji Cao,^a Wenting Wu,^a Lei Chen,^c Jing Zhang,^c Zelong Zhang,^{a,*} Yi Zhou^{a,*} and Bo Song^{a,*}

^a Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China

^b School of Materials Science and Engineering (MSE), NingboTech University, Ningbo, 315211, P. R. China

^c School of Material Science & Engineering, National Experimental Demonstration Center for Materials Science & Engineering, Jiangsu Province Cultivation base for State Key Laboratory of Photovoltaic Science and Technology, Changzhou University,

Changzhou, Jiangsu 213164, P. R. China

[#] Dong Rui and Jianfei Fu contributed equally to this work.

[*] Corresponding authors: <u>songbo@suda.edu.cn</u> (B. Song); <u>yizhou@suda.edu.cn</u> (Y. Zhou); <u>zlzhang@suda.edu.cn</u> (Z. Zhang)

Fig. S1. Chemical structures and corresponding structural diagrams of TBAPF₆.

Fig. S2. The solubility of TBAPF₆ in (a) isopropanol and (b) chlorobenzene. According to previous reports, isopropyl alcohol (IPA) and chlorobenzene (CB) were common solvents for Surface treatment of as-deposited CsPbI₃ films and were used in this work.¹⁻³ The same amount of TBAPF₆ was added in equal volume of IPA or CB. After stirring, TBAPF₆ couldn't dissolve in IPA and there was a large amount of precipitation at room temperature. With heating, TBAPF₆ gradually dissolved in IPA and a colorless and transparent solution would be observed. However, crystal particles would precipitate rapidly after cooling down (Fig. S2a). In contrast, TBAPF₆ could well dissolve in CB to form a colorless and transparent solution at room temperature (Fig. S2b).

Fig. S3. (a) X-ray diffraction patterns of the $[TBA]PbI_3$ single crystal immersed in deionized water or CB for 7 days. (b) TGA curve of the low-dimensional material

[TBA]PbI₃.

On one hand, under the consideration of moisture stability of synthetic [TBA]PbI₃ single crystals, [TBA]PbI₃ was immersed in deionized water at room temperature for 7 days. On the other hand, the using of hole transport material (HTM) in this work is Spiro-OMeTAD and CB is the common solvent for Spiro-OMeTAD.⁴⁻⁶ Therefore, the spinning coating of hole transport layer (HTL) could cause damage to perovskite layer, and the similar experiment was conducted by soaking [TBA]PbI₃ into CB. Herein, we used XRD to estimate the degradation of [TBA]PbI₃ single crystals (Fig. S3a).

[TBA]PbI₃ single crystals exhibited excellent thermal stability by thermogravimetric analysis (TGA) measurement. The weight loss of synthetic [TBA]PbI₃ single crystals was only 1 wt% when temperature increased up to 220 °C, and the apparent weight losses happened at temperature ranges from 220 °C to 400 °C and from 400 °C to 600 °C, corresponding to volatilization of TBAI and sublimation of PbI₂, respectively.⁷

Fig. S5. Schematic diagram of the preparation of CsPbI₃ films with surface treatment of TBAPF₆.

Fig. S6. (a) SEM image of TBAPF₆-treated film, (b-f) Elemental analysis spectra of Cs, Pb, I, P, and F.

Fig. S7. Relative content analysis results of different elements on the surface of the TBAPF₆-treated film.

Fig. S8. UV-vis absorption spectra of the control and TBAPF₆-treated films.

Fig. S9. SEM images of (a) control and (b) TBAPF₆-treated films.

Fig. S10. AFM images of (a), (c) control and (b), (d) TBAPF₆-treated films.

Fig. S11. XPS spectra of $TBAPF_6$ sample and $TBAPF_6$ -treated films. (a) F 1s, (b) N 1s.

Fig. S12. PCEs statistics of C-PSCs treated with different concentrations of TBAPF₆.

Fig. S13. Histograms of the (a) V_{OC} , (b) J_{SC} , (c) FF, and (d) PCE values based on the control and TBAPF₆-treated devices.

Fig. S14. Reverse scan (RS) and forward scan (FS) of TBAPF₆-treated devices.

Fig. S15. Reverse scan and forward scan of control devices.

Table S1. Fitted parameters from TRPL spectra for the control and TBAPF₆-treated films.

	$ au_1$ (ns)	$ au_2$ (ns)	f_1 (%)	f_{2} (%)	$ au_{\rm ave}({\rm ns})$
Control	2.4	28.2	12.1	87.9	27.9
TBAPF ₆ -treated	2.0	37.5	6.7	93.3	37.3

Table S2. Photovoltaic parameters of the control and TBAPF₆-treated devices.

	$V_{\rm OC}\left({\rm V}\right)$	$J_{\rm SC}$ (mA cm) ⁻²	FF (%)	PCE _{best} (PCE _{avg}) (%)
Control	1.03	19.93	80.9	$16.55\ (15.69\pm 0.86)$
TBAPF ₆ -treated	1.06	20.01	82.2	$17.47~(16.72\pm0.75)$

Table S3. Photovoltaic parameters of the control and TBAPF₆-treated devices in the reverse scan and forward scan directions.

		$V_{\rm OC}$ (V)	$J_{\rm SC}$ (mA cm) ⁻²	FF (%)	PCE (%)	<i>h</i> ^a
Control	RS	1.03	19.48	80.9	16.17	18.6%
	FS	1.00	19.70	66.8	13.17	
TBAPF ₆ - treated	RS	1.05	19.87	83.2	17.41	0.50/
	FS	1.03	19.59	79.2	15.94	8.3%

 $^{a}h = (PCE_{RS} - PCE_{FS}) / PCE_{RS}$, where RS and FS represent the reverse and forward scan directions, respectively.

References

- X. Tan, S. B. Wang, Q. X. Zhang, H. C. Liu, W. P. Li, L. Q. Zhu and H. N. Chen, Matter, 2023, 6, 691-727.
- X. Zhu, M. Du, J. Feng, H. Wang, Z. Xu, L. Wang, S. Zuo, C. Wang, Z. Wang, C. Zhang, X. Ren, S. Priya, D. Yang and S. Liu, *Angew. Chem. Int. Ed.*, 2021, 60, 4238-4244.
- 3. X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen and Y. Zhao, *Angew. Chem. Int. Ed.*, 2021, **60**, 12351-12355.
- T. Wu, W. X. Ji, L. G. Zhang, Q. Y. Chen, J. F. Fu, J. J. Zhang, Z. L. Zhang, Y. Zhou, B. Dong and B. Song, *J. Mater. Chem. A*, 2023, 11, 3599-3607.
- J. F. Fu, J. J. Zhang, T. Y. Zhang, L. G. Yuan, Z. L. Zhang, Z. X. Jiang, Z. Z. Huang, T. Wu, K. Y. Yan, L. G. Zhang, A. L. Wang, W. X. Ji, Y. Zhou and B. Song, *Acs Nano*, 2023, 17, 2802-2812.
- X. B. Chu, Q. F. Ye, Z. H. Wang, C. Zhang, F. Ma, Z. H. Qu, Y. Zhao, Z. G. Yin, H. X. Deng, X. W. Zhang and J. B. You, *Nat. Energy*, 2023, 8, 372-380.
- 7. Y.-J. She, S.-P. Zhao, Z.-F. Tian and X.-M. Ren, *Inorg. Chem. Commun.*, 2014, 46, 29-32.