Supporting Information

Ni₃Se₄/Fe(PO₃)₂/NF Composites as high-efficiency electrocatalysts with a low overpotential for the oxygen evolution reaction

Ting-Yu Shuai, Qi-Ni Zhan, Hui-Min Xu, Chen-Jin Huang, Zhi-Jie Zhang, Hong-Rui Zhu, Gao-Ren Li*

College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

Fig. S1 CVs of (a) $Ni_3Se_4/Fe(PO_3)_2/NF$, (b) Ni_3Se_4/NF , (c) $Fe(PO_3)_2/NF$, (d) NF from 20 to 120 mV S⁻¹.

Fig. S2 Polarization curves of (a) Ni₃Se₄/Fe(PO₃)₂/NF, (b)Ni₃Se₄/NF, (c) Fe(PO₃)₂/NF, (d) NF at different temperatures without IR compensation.

Fig. S3 The equivalent circuit model for electrochemical impedance spectrum fitting.

Fig. S4 SEM images of Ni_3Se_4/NF with different magnifications.

Fig. S5 SEM images of $Fe(PO_3)_3/NF$ with different magnifications.

Fig. S6 Stability test of $Ni_3Se_4/Fe(PO_3)_3/NF$ at the current density of 100 mA cm⁻² for 12 h without IR compensation.

Fig. S7 SEM images of $Ni_3Se_4/Fe(PO_3)_3/NF$ after 12 h OER stability test at a constant current density of 10 mA cm⁻² (the NF skeleton structure was not destroyed).

Fig. S8 XPS elemental survey spectra of (a) $Fe(PO_3)_2/NF$ and (b) Ni_3Se_4/NF samples.

Fig. S9 Raman shift curves of (a) $Fe(PO_3)_2$ and (b) Ni_3Se_4 samples.

Fig. S10 TEM images of polycrystalline region of $Ni_3Se_4/Fe(PO_3)_2/NF$ with different magnifications.

Fig. S11 EDS pattern of the $Ni_3Se_4/Fe(PO_3)_2/NF$.

Fig. S12 EDS pattern of the Ni₃Se₄/Fe(PO₃)₂/NF after 12 h stability test at 10 mA cm⁻².

Fig. S13 EDS mappings of Ni, Fe, Se, P in Ni₃Se₄/Fe(PO₃)₂/NF after 12 h stability test at 10 mA cm⁻².

Electrocatalyst	$R_s(\Omega)$	$R_{ct}(\Omega)$	$\operatorname{Rp}(\Omega)$
Ni ₃ Se ₄ /Fe(PO ₃) ₂ /NF	1.408	2.283	0.42865
Ni ₃ Se ₄ /NF	1.084	6.602	0.57529
Fe(PO ₃) ₂ /NF	1.298	9.664	0.40404
NF	1.318	44.65	1.724

 Table S1. Summary of EIS fitting results of different catalysts for OER in 1.0 M KOH.

Sample ID	BET surface area (m ² g ⁻¹)	Average pore size (nm)	Pore volume (cm ³ g ⁻¹)
Ni ₃ Se ₄ /Fe(PO ₃) ₂	76.765	3.2506	0.076405
Ni ₃ Se ₄	25.5082	7.5142	0.065105
Fe(PO ₃) ₂	17.312	9.7661	0.052543

Table S2. BET surface areas, average pore sizes (adsorption) and total pore volumes of various samples.

Element	mass ratio	molar ratio
Se	24.4%	28.4%
Р	3.2%	10.4%

Table S3. The mass and molar ratio of Se and P in $Ni_3Se_4/Fe(PO_3)_2/NF$ analyzed by ICP-OES.

Sample	$C_{dl} (mF cm^{-2})$	ECSA (cm ²)
Ni ₃ Se ₄ /Fe(PO ₃) ₂ /NF	8.5	212.5
Ni ₃ Se ₄ /NF	4.3	107.5
Fe(PO ₃) ₂ /NF	2.5	62.5
NF	0.8	20.0

Table S4. Summary of Electrochemical double-layer capacitance (C_{dl}) and ECSA of different samples.

Electrocatalyst	Overpotential (mV)	Tafel slope	Ref
		$(mV dec^{-1})$	
Ni ₃ Se ₄ /Fe(PO ₃) ₂ /NF	$185(\eta_{10})$	30.4	This work
(Ni,Fe) ₃ Se ₄	$225(\eta_{10})$	41	1
Ni ₃ Se ₄ /FeOOH	$249(\eta_{10})$	46	2
Ni ₃ Se ₄ /NiFe LDH/CFC	$223(\eta_{10})$	55.5	3
Fe(PO ₃) ₂ /Ni ₂ P/NF	$177(\eta_{10})$	51.9	4
CCS-NiFeP-10	$201(\eta_{10})$	41.2	5
Fe-18h/NF	$220(\eta_{10})$	45.2	6
Fe-Ni ₂ P@C/NF	255(y ₂₀₀)	64	7
Fe-Ni ₃ S ₂	$290(\eta_{100})$	46.9	8
FeCoNiS/NF	$164(\eta_{10})$	23.2	9
Fe-Ni ₅ P ₄ /NiFeOH-350	$221(\eta_{10})$	35.0	10
Ni/Fe-MI/OH	$229(\eta_{10})$	30.0	11
Ni ₃ S ₂ /MIL-53(Fe)	$214(\eta_{10})$	33.8	12
d-NiFe-LDH	$230(\eta_{10})$	77.0	13
NiFe-LDH/NiS/NF	230(η ₁₀)	60.1	14
Ni ₃ S ₂ @Fe-NiP _x /NF	$240(\eta_{100})$	46.5	15
Fe-NiO/NiS ₂	$270(\eta_{10})$	40	16

 Table S5. Comparisons of the electrocatalytic performance of NiFe-based catalysts for OER in 1.0 M KOH.

References

- 1 J. Du, Z. Zou, C. Liu and C. Xu, Nanoscale, 2018, 10, 5163-5170.
- 2 L. Lv, Y. Chang, X. Ao, Z. Li, J. Li, Y. Wu, X. Xue, Y. Cao, G. Hong and C. Wang, Mater. Today Energy, 2020, 17, 100462.
- 3 T. Zhang, L. Hang, Y. Sun, D. Men, X. Li, L. Wen, X. Lyu and Y. Li, Nanoscale Horiz., 2019, 4, 1132-1138.
- 4 H. Zhou, F. Yu, J. Sun, R. He, S. Chen, C. Chu and Z. Ren, Proc. Natl. Acad. Sci. U. S. A., 2017, 114, 5607-5611.
- 5 S. Li, L. Wang, H. Su, A. N. Hong, Y. Wang, H. Yang, L. Ge, W. Song, J. Liu, T. Ma, X. Bu and P. Feng, *Adv. Funct. Mater.*, 2022, **32**, 2200733.
- 6 N. K. Shrestha, S. A. Patil, J. Han, S. Cho, A. I. Inamdar, H. Kim and H. Im, J. Mater. Chem. A, 2022, 10, 8989-9000.
- 7 D. Li, Z. Li, R. Zou, G. Shi, Y. Huang, W. Yang, W. Yang, C. Liu and X. Peng, Appl. Catal. B: Environ., 2022, 307, 121170.
- 8 D. Li, W. Wan, Z. Wang, H. Wu, S. Wu, T. Jiang, G. Cai, C. Jiang and F. Ren, Adv. Energy Mater., 2022, 12, 2201913.
- 9 Y. Huang, L. Jiang, H. Liu and J. Wang, Chem. Eng. J., 2022, 441, 136121.
- 10 C. Li, J. Zhao, L. Xie, J. Wu and G. Li, Appl. Catal. B: Environ., 2021, 291, 119987.
- 11 W. Huang, C. Chen, Z. Ling, J. Li, L. Qu, J. Zhu, W. Yang, M. Wang, K. A. Owusu, L. Qin, L. Zhou and L. Mai, *Chem. Eng. J.*, 2021, **405**, 126959.
- 12 F. Wu, X. Guo, Q. Wang, S. Lu, J. Wang, Y. Hu, G. Hao, Q. Li, M. Yang and W. Jiang, J. Mater. Chem. A, 2020, 8, 14574-14582.
- 13 Y. Wu, J. Yang, T. Tu, W. Li, P. Zhang, Y. Zhou, J. Li, J. Li and S. Sun, Angew. Chem. Int. Edit., 2021, 60, 26829-26836.
- 14 Q. Wen, K. Yang, D. Huang, G. Cheng, X. Ai, Y. Liu, J. Fang, H. Li, L. Yu and T. Zhai, Adv. Energy Mater., 2021, 11, 2102353.
- 15 X. Luo, P. Ji, P. Wang, X. Tan, L. Chen and S. Mu, Adv. Sci., 2022, 9, 2104846.
- 16 N. Zhang, Y. Hu, L. An, Q. Li, J. Yin, J. Li, R. Yang, M. Lu, S. Zhang, P. Xi and C. Yan, Angew. Chem. Int. Edit., 2022, 61, e202207217.