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1 Feature sensitivity analysis
In Figure S1, we provide examples illustrating the relationships between CO adsorption energies
and the chemical properties of guest species. We note that in the region surrounding the guest
species (dark blue and blue dots) there is a correlation between the features and ∆ECO, while far
from the impurity no visible trend appears. This behavior is consistent with the one observed in
Figure 6 of the manuscript.
We also evaluate the impact of feature selection on the model behaviors and in Table S1 we report
a comparison of the performance of the selected algorithms (GBC for classification and GBR for
regression) when considering different numbers of features.
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Figure S1: CO adsorption energies as a function of four chemical features of the guest species,
namely AtGroup, IonEn, BoilPoint and MeltPoint. The color bar refers to the distance of the
adsorption site from the M atom

Model All Features 7 Features
GBC (min) 0.915 0.929
GBC (maj) 0.985 0.987
GBR (R2) 0.970 0.978
GBR (MSE) 0.003 0.002

Table S1: Summary of F1 scores obtained for GBC, as well as MSE (in eV2) and R2 scores for
GBR. The scores are presented for both complete (on the left) and reduced (on the right) feature
vectors.

2 Cluster Expansion
The Cluster Expansion (CE) is performed by means of the Alloy Theoretic Automated Toolkit
(ATAT) software package [1] coupled with Large-scale Atomic Molecular Massively Parallel Simu-
lator [2–4] (LAMMPS). The use of LAMMPS ensures a faster evaluation of the alloy phase diagram.
Additional information regarding the theoretical foundation and implementation of the CE can be
found in our previous works. [5–7] Copper-based bimetallic alloys are described by using an EAM
potential, parameterized as reported in reference, [8] and the minimization process is carried out
using the Conjugate Gradient algorithm. Since we exclusively consider superficial substitutional
impurities during the training process, the CE involves only the topmost layer of the alloy. The
accuracy of the EAM potential is verified by comparing the formation energies of Au and Ag
substitutional impurities on the surface, calculated using the EAM potential, with those obtained
from Density Functional Theory (DFT). We observe a good agreement between the two sets of
data, with an average Root Mean Square Error (RMSE) of 0.064 eV. For the comparison of the
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Figure S2: Structures obtained with the CE of the Cu0.889Au0.111(111) (a), Cu0.833Ag0.167(111)
(b) and Cu0.875Au0.125(100) (c) alloys. Color code: Cu (orange), Au (yellow) and Ag (light gray)

formation energies, we use the same structure employed in DFT calculations, i.e. a 4-layers thick
slab with 6×6 surface supercell. In the CE, we add 6 layers to the original structure, resulting in
a 10-layers thick slab with 6×6 surface supercell. Then we calculate the energies of the structures
automatically generated by ATAT. To ensure coverage of impurity concentrations in the phase
diagram that are not typically addressed by ATAT, we also provide ad hoc structures to the algo-
rithm. The CE is performed for an impurity concentration interval corresponding to 0 ≤ x ≤ 0.3
for both Cu1-xAgx and Cu1-xAux alloys. This range is chosen because it extends to concentration
values higher than those used to train the ML algorithm, but at the same time it ensures that the
surface does not undergo significant structural rearrangement typical of strained surface layers.
In Figure S2 we report the three structures obtained with the CE that we used as test set for our
ML models, while in Figure S3 we show the CO adsorption energy maps on the Cu0.889Au0.111(111)
as a representative case. The stability of the different adsorption sites is predicted with an accuracy
of 100% and the CO binding energy forecast is very precise (this is confirmed by the parity plot
reported in Figure 7, red dots).
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Figure S3: DFT-calculated (left) and ML-predicted (right) CO adsorption energy maps over the
Cu0.889Au0.111(111) surface.
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