Supporting Information

Significant inhibition of secondary pollution in the catalytic oxidation of chloroaromatics over a bifunctional Ru_1/CeO_2 single-atom catalyst

Yu Wang^{‡,[a]}, Zhang Liu^{‡,[c]}, Yao Wei^{‡,[d,e]}, Yiming Hu^[f], Yi Chen^[a,f], Bin Shan^{*[c]} and Bo Wu^{*[b,g]}

[a] College of Resources and Environment Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China

[b] CAS Key Laboratory of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China. wubo0422@ustc.edu.cn

[c] State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China. bshan@mail.hust.edu.cn

[d] Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, P.

R. China

[e] University of Chinese Academy of Sciences, Beijing 100049, P. R. China

[f] Tongxiang Ties Environmental Energy co., Ltd., Jiaxing 314500, P. R. China

[g] Hefei National Laboratory for Physical Sciences at the Microscale, University of Science

and Technology of China, Hefei, Anhui 230026, P. R. China

Figure S1. Schematic illustrations of the preparation of Ru₁/CeO₂ catalyst.

Figure S2. N2 adsorption-desorption isothermal of CeO2, Ru1/CeO2 and NP-Ru/CeO2.

Figure S3. (a) SEM, (b) HRTEM, (c) TEM images and (d) histogram of RuO₂ NPs particle size for NP-Ru/CeO₂.

Figure S4. Ru 2p spectra of Ru₁/CeO₂ and NP-Ru/CeO₂.

Figure S5. FTIR spectrum for CeO₂, Ru₁/CeO₂, and NP-Ru/CeO₂.

Figure S6. O chemical potential calculation showed that $CeO_2(111)$ exposed the O-cus to seal under experimental conditions. a $CeO_2(111)$ p(3×3) slab model was established with 9 layers of atoms, 3 layers under fixed, and a 15 Å vacuum layer.

Figure S7. Ru atoms tend to bind to the hollow site formed by 3 O atoms of CeO₂(111). As for (RuO₂)_n/CeO₂(111), when n=3, the configuration of the Ru₃O₆ cluster loaded by CeO₂(111) is the most stable model.

Figure S8. Arrhenius plots and apparent activation energy (*E*_a) of Ru₁/CeO₂ and NP-Ru/CeO₂, respectively. Reaction conditions: 1000 ppm CB/5 vol.% H₂O/air.

Figure S9. Long-term stability tests of CB oxidation tested at 200 $\,^{\circ}$ C over Ru₁/CeO₂ and

NP-Ru/CeO₂.

Figure S10. Possible reaction intermediate products detected by GC-MS during the CB oxidation at 240 °C over Ru₁/CeO₂ and NP-Ru/CeO₂.

Catalyst	Ru content (wt%) ^[a]	$\frac{S_{BET}}{\left(m^2/g\right)^{\left[b\right]}}$	Pore volume (cm ³ /g) ^[b]
CeO ₂	0	73.3	0.044
Ru ₁ /CeO ₂	1.04	105.5	0.074
NP-Ru/CeO ₂	1.06	58.9	0.040

Table S1. ICP-OES study and physiochemical properties for all the samples.

 $^{[a]}$ The Ru content was determined by ICP-OES. $^{[b]}$ The surface area and pore volume were measured by N_2 adsorption-desorption isotherm.

Samples	Shell	CN ^[a]	$R (Å)^{[b]}$	$\sigma^2 (10^{-3} \mathring{A}^2)^{[c]}$	$\Delta E_0 (eV)^{[d]}$	R-factor (%) ^[e]	
Ru foil	Ru-Ru	12	2.67±0.003	3.0±0.5	4.6±0.7	0.9	
PuO.	Ru-O	6	1.96	/	/	/	
KuO ₂	Ru-Ru	2	3.11	/	/	1	
NP-Ru/CeO ₂	Ru-O	4.5±0.6	1.94 ± 0.01	4.2±1.9	$-3.9{\pm}1.8$	2.1	
	Ru-Ru	2.2±0.6	3.14 ± 0.05	5.0±1.9	$-3.9{\pm}1.8$	2.1	
Ru ₁ /CeO ₂	Ru-O	4.1±0.9	1.95 ± 0.02	5.9±3.1	3.0±2.8	1 4	
	Ru-Ru	/	/	/	/	1.4	

Table S2. Structural parameters extracted from Ru K-edge XAFS fitting.

^[a] CN, coordination number. ^[b] R, distance between absorber and backscatter atoms. ^[c] σ^2 , Debye–Wallerfactor to account for both thermal disorder and structural disorder. ^[d] ΔE_0 , inner potential correction to account for the differences in the inner potential between the sample and the reference compound. ^[e] R-Factor (%) indicates the goodness of the fit. The obtained S₀² of Ru foil was 0.75 and it was fixed in the subsequent fitting of Ru foil K-edge data for the catalyst.

Entry	Catalyst	$O_{\beta}\!/(O_{\alpha}\!\!+\!\!O_{\beta})\;{}^{[a]}$	EPR ratio [b]	$I_D/IF_{2g}{}^{[c]}$
1	CeO ₂	0.37	1	0.0145
2	Ru ₁ /CeO ₂	0.44	1.66	0.0568
3	NP-Ru/CeO ₂	0.67	1.99	0.0811

Table S3. Surface properties for CeO₂, Ru₁/CeO₂ and NP-Ru/CeO₂.

^[a] Determined from the XPS in O 1s region. ^[b] Determined from the EPR spectra, we set the integrated area (in the range from 2.003-2.030) of CeO₂ as 1, the EPR ratio was calculated based on the integrated area of Ru₁/CeO₂ and NP-Ru/CeO₂ divide the integrated area of CeO₂. ^[c] Determined from Raman spectra.

Catalysts	GHSV (mL/g	T_{50} / T_{90}	Rate at	Ru content	TOFs at 200 °C	Ref.
	h) and CB	(°C)	200 °C	(wt.%)	(h^{-1})	
	Conc. (ppm)		(mmol/(g h))			
Ru ₁ /CeO ₂	30000, 1000	192/220	0.83	1.04	8.07	this work
NP-Ru/CeO ₂	30000, 1000	202/227	0.55	1.06	5.28	this work
Ru/Fe1Mn2	20000, 600	158/197	0.53	0.94	5.70	1
0.05P/RuCe	15000, 217	175/250	0.09	0.75	1.27	2
Ru/SnO ₂	30000, 1000	280/310	0.03	1.21	0.22	3
1%Ru/TiO ₂	60000, 500	275/287	0.01	1.00	0.14	4
Ru5/Ti-350	60000, 500	240/260	0.16	4.83	0.34	5
1Ru-5Ce/TiO ₂	60000, 500	258/283	0.07	0.50	1.35	6
1%Ru/Ti5Ce95	12000, 550	187/224	0.20	1.15	1.73	7
1%Ru/SBA-15	12000, 550	312/350	0.01	1.00	0.06	8
Ru/CeO ₂ -r	30000, 1000	230/280	0.28	0.38	7.48	9
1%Ru-CeO ₂	12000, 550	205/248	0.13	0.58	2.26	10
Ru/CeO ₂	60000, 1000	250/280	0.03	0.80	0.34	11

 Table S4. Recently reported Ru-based catalysts for CB catalytic oxidation.

No.	Molecular formula	Molecular structure	Compound name
1	CO ₂	CO ₂	carbon dioxide
2	$C_2H_2O_3$	OH O	2-oxoacetic acid
3	$C_6H_{12}Cl_2O_2$		1,1-dichloro-2,2-dimethoxyethane
4	HC1	HCl	chlorine hydride
5	C ₆ H ₅ Cl	Ci	chlorobenzene
6	C ₃ H ₅ Cl ₃ O		1,1,1-trichloropropan-2-ol
7	$C_5H_8O_4$	~ °	dimethyl malonate
8	$C_6H_4Cl_2$	CI CI	1,3-dichlorobenzene
9	$C_6H_4Cl_2$	CI CI	1,4-dichlorobenzene
10	$C_6H_4Cl_2$	CI	1,2-dichlorobenzene
11	$C_9H_{10}O$		2,4-dimethylbenzaldehyde
12	C ₆ H ₃ Cl ₃	CI CI	1,3,5-trichlorobenzene
13	C ₆ H ₃ Cl ₃	CI CI	1,2,4-trichlorobenzene
14	C ₉ H ₁₀ O	→→→~°	3,4-dimethylbenzaldehyde
15	$C_6H_2Cl_4$		1,2,4,5-tetrachlorobenzene

Table S5. Qualitative analyses of the byproducts in the off-gases from the CB oxidation overRu1/CeO2 and NP-Ru/CeO2 samples.

References

- G. Wang, Y. Wang, L. Qin, B. Zhao, L. Guo and J. Han, *Catal. Sci. Technol.*, 2020, 10, 7203-7216.
- Q. Dai, K. Shen, W. Deng, Y. Cai, J. Yan, J. Wu, L. Guo, R. Liu, X. Wang and W. Zhan, *Environ. Sci. Technol.*, 2021, 55, 4007-4016.
- 3. J. Zhao, W. Xi, C. Tu, Q. Dai and X. Wang, *Appl. Catal. B: Environ.*, 2020, **263**, 118237.
- 4. X. Liu, L. Chen, T. Zhu and R. Ning, J. Hazard. Mater., 2019, 363, 90-98.
- J. Wang, H. Zhao, X. Liu, W. Xu, Y. Guo, J. Song and T. Zhu, *Catal. Lett.*, 2019, 149, 2004-2014.
- 6. M. Ye, L. Chen, X. Liu, W. Xu, T. Zhu and G. Chen, *Catalysts*, 2018, **8**, 116.
- Q. Dai, S. Bai, J. Wang, M. Li, X. Wang and G. Lu, *Appl. Catal. B: Environ.*, 2013, 142-143, 222-233.
- 8. Q. Dai, S. Bai, X. Wang and G. Lu, Appl. Catal. B: Environ., 2013, 129, 580-588.
- 9. H. Huang, Q. Dai and X. Wang, *Appl. Catal. B: Environ.*, 2014, **158-159**, 96-105.
- Q. Dai, S. Bai, Z. Wang, X. Wang and G. Lu, *Appl. Catal. B: Environ.*, 2012, **126**, 64-75.
- 11. X. Lv, M. Jiang, J. Chen, D. Yan and H. Jia, *Appl. Catal. B: Environ.*, 2022, **315**, 121592.