Supporting Information

Suppression of bipolar excitation and enhanced thermoelectric performance in n-type $Bi₂Te₃$ with argyrodite Ag_8SnSe_6 inclusion

Abubakar Yakubu Haruna, Yubo Luo, Wang Li, Min An, Peichi Fu, Xin Li, Qinghui Jiang, Junyou Yang **

State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

*** Corresponding author.

Email: luoyubo@hust.edu.cn; jyyang@mail.hust.edu.cn.

The analysis of preferred orientation

The degree of the grain orientation in the samples can be described by the orientation factor (F), calculated using the Lotgering method. F is defined as:

$$
F = \frac{P - P_o}{1 - P_o}
$$
 $S1$

$$
P = \frac{I_{(00l)}}{P}
$$
 $S2$

$$
P_o = \frac{I_{o(00l)}}{\sum I_{(hkl)}}
$$
 52

$$
P_o = \frac{I_{o(00l)}}{\sum I_{o(hkl)}}
$$
 53

where $I(00l)$ and $I_0(00l)$ are the intensities of XRD reflection peaks for oriented and nonoriented samples, respectively; $\Sigma I(hkl)$ and $\Sigma I_0(hkl)$ are the sum of the intensities of all peaks for the measured section in oriented and non-oriented samples.

Figure. S1. Rietveld refined analysis from PXRD patterns of (a)-(d) $\overline{Bi_{1.995}Cu_{0.005}Te_{2.69}Se_{0.33}Cl_{0.03} + x \text{ wt } \% STSe (x = 0, 0.25, 0.5, \text{ and } 0.65).}$

Figure. S2. The energy dispersive spectrum (a) $Bi_{1.995}Cu_{0.005}Te_{2.69}Se_{0.33}Cl_{0.03}$; (b) $x = 0.5$ wt% STSe.

Figure S3 FSEM of fractured surface of (a) $Bi_{1.995}Cu_{0.005}Te_{2.69}Se_{0.33}Cl_{0.03}$; and (b-e) STSe wt%. (f) average grain size of all the samples.

Figure S4. Characterization of Nanostructures in $Bi_{1.995}Cu_{0.005}Te_{2.69}Se_{0.33}Cl_{0.03}$: (a) Lowmagnification TEM (LM-TEM) image; (b) Enlarged LM-TEM image of the area highlighted with a white-dashed rectangle; (c) Corresponding HR-TEM image of (a) exhibiting various interplanar spacings, and (d) Inverse Fast Fourier Transform (IFFT) (e) Selected area diffraction with inset d intensity profile of (c).

Figure. S5. (a) Thermal diffusivity; (b) Lorentz constant; (d) $Bi_{1.995}Cu_{0.005}Te_{2.69}Se_{0.33}Cl_{0.03}$ $+x$ wt% STSe.

The estimation of specific heat¹

$$
C_P = C_v + (CTE)^{2T} / \beta_T D
$$

$$
C_v = 9nR \left(\frac{T}{\theta_D}\right)^3 \int_0^{\theta_D/T} \frac{x^4 e^x}{\left(e^x - 1\right)^2} dx
$$

$$
C_v/3n = D(T, \theta_D, n) = 1 + d_1(\theta_D/T) + d_2(\theta_D/T)^2 + \dots + d_9(\theta_D/T)^9 \qquad S6
$$

$$
C_p \approx C_v + AC_p^2 T
$$

where CTE is the coefficient of thermal expansion, β_T is the isothermal compressibility, D is the density, θ_D is the Debye temperature, R is the universal gas constant. At low temperatures (T $<<$ θ_D), the Debye T³ law, and it becomes the Dulong-Petit limit of 3R at T >> $\theta_{\rm D}$. Cv/3R is the Debye function and n is atoms per unit formula.

The equations for SPB model are:

$$
m^* = \frac{h^2}{2k_B T} \left[\frac{n}{4\pi F_1(\eta)} \right]^{2/3} \qquad \qquad \text{S8}
$$

The Seebeck coefficients, the scattering factor $r = -1/2$ in acoustic phonon scattering

$$
S = -\frac{k_B}{e} \left(\frac{\left(r + \frac{3}{2}\right)F_{r + \frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r + \frac{1}{2}}(\eta)} - \eta \right)
$$

The integral $F_b \eta$ is defined by

$$
F_b(\eta) = \int_0^\infty \frac{x^b}{1 + e^{x - \eta}} dx
$$
 510

$$
\eta = -\frac{E_f}{k_B T} \tag{511}
$$

Where F_b η is the Fermi integral function of order b, and η is the reduced Fermi energy.

The Lorenz number obtained based on the single parabolic band:

$$
L = \left(\frac{k_B}{e}\right)^2 \left(\frac{\left(r + \frac{7}{2}\right)F_{r + \frac{5}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r + \frac{1}{2}}(\eta)} - \left(\frac{\left(r + \frac{5}{2}\right)F_{r + \frac{3}{2}}(\eta)}{\left(r + \frac{3}{2}\right)F_{r + \frac{1}{2}}(\eta)}\right)^2\right)
$$
 512

Reference

(1) Wang, H., Porter, W.D., Böttner, H., König, J., Chen, L., Bai, S., Tritt, T.M., Mayolet, A., Senawiratne, J., Smith, C. and Harris, F. Transport properties of bulk thermoelectrics: an international round-robin study, part II: thermal diffusivity, specific heat, and thermal conductivity. *Journal of electronic materials 2013, 42*,*1073-1084*.