Supporting Information

Low-temperature synthesis of NH_3 *via* an alternate gas-switching NO_x storagereduction process using a BaO/Pt@mTiO₂ nanocomposite catalyst

Yuxiao Zhang, Atsuko Tomita, Ryutaro Wakabayashi and Tatsuo Kimura*

National Institute of Advanced Industrial Science and Technology (AIST), Sakurazaka, Moriyama-ku, Nagoya 463-8560, Japan.

*t-kimura@aist.go.jp

Table S1 The amount of stored NO_x and resultant nitrogen compounds during the 1st gasswitching operation of the inlet gas between 1000 ppm NO with 10% O₂ and 1% H₂ at temperatures ranging from 300 °C down to 175 °C

temp. (°C)	Storage (mmol g ⁻¹)	Reduction (mmol g ⁻¹)		
	$NO_x (NO+NO_2)$	NH ₃	N ₂ O	N_2
175	0.15	0.14	0.00	0.01
200	0.21	0.15	0.01	0.02
250	0.26	0.16	0.01	0.04
300	0.18	0.03	0.01	0.06

Fig. S1 Low- and wide-angle XRD patterns, N_2 adsorption-desorption isotherm and TEM images of (a, b, c, d) mTiO₂ prepared through an aerosol-assisted EISA process in the presence of Pluronic F127.

Fig. S2 Pore size distribution curves of (a) Pt@mTiO₂ and (b) BaO/Pt@mTiO₂.

Fig. S3 *In situ* FT-IR measurements at every 4 min by using BaO/Pt@mTiO₂ during the gas-switching operation of the inlet gas between 500 ppm NH₃ for 30 min and N₂ for 30 min at (a, b) 300 °C and (c, d) 175 °C.

Fig. S4 The steady-state oxidation of NO in a flow of 1000 ppm NO with 10% O_2 for 30 min by using BaO/Pt@mTiO₂ at different temperatures.

Fig. S5 Direct catalytic reduction of NO in a flow of 1000 ppm NO with 1% H₂ by using (a) Pt@mTiO₂ and (b) BaO/Pt@mTiO₂ at different temperatures.

Fig. S6 Time-course plots of nitrogen compounds (e.g., NO, NO₂, N₂O and NH₃) during the alternate gas-switching operation of the inlet gas between 1000 ppm NO with 10% O₂ and 5% H₂ at (a) 300 °C, (b) 250 °C (c) 200 °C and down to (d) 175 °C.

Fig. S7 A summary of the amount of stored NO_x and resultant nitrogen compounds with the selectivity to NH₃ during the 1st gas-switching operation of the inlet gas between 1000 ppm NO with 10% O₂ and 5% H₂ at temperatures ranging from 300 °C down to 175 °C.