## **Supporting information:**

## **Conductivity of Cold Sintered Diphasic Composites Containing a Ceramic Active Material and a Solid-State Electrolyte or Carbon for All Solid-State**

## **Batteries**

Zane M. Grady<sup>1,2</sup>, Zhongming Fan<sup>1,2</sup>, Julian Fanghanel<sup>1,2</sup>, Clive A. Randall<sup>1,2</sup>

<sup>1</sup>Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, United States

<sup>2</sup>Materials Research Institute, The Pennsylvania State University, University Park, PA, United States



*Figure S1 NVP* and carbon prior to mixing (A). *NVP* and carbon after mixing (B). *NVP* and carbon pellet after being heated to 510 °C under air (C). *NVP* and carbon after being heated to 637°C under air (D).



**Figure S2** The relative density (A) and Archimedes density (B) of carbon black – NVP composites. The relative density (C) and Archimedes density (D) of NZSP – NVP composites. Theoretical densities calculated based on volume fraction of composite and material densities (NVP = 3.16, NZSP = 3.26, carbon black =  $1.6 \text{ g.cm}^{-3}$ )



*Figure S3* The logarithm of total, grain boundary (gb), and grain interior (grain) conductivity plotted against inverse absolute temperature for the pure cold sintered NVP.



*Figure S4* Complex impedance spectra of a sample containing 2.25 vol.% carbon black. The dispersion in the low frequency data renders it difficult to fit (A), but  $R_{tot}$  can be estimated from the well-resolved high frequency semicircle, as shown in (B)



Figure S5 The EIS spectra of all carbon-NVP composites at 30°C. The data for Super P is shown in A and that for carbon nanofibers is shown in B.



*Figure S6 Additional TEM images demonstrating carbon presence in the grain boundaries of a carbon black – NVP diphasic composite.* 



*Figure S7*  $E_{a,tot}$  is plotted as a function of volume fraction of NZSP (A) or carbon (B)



**Figure S8** The EIS spectra of a 90 vol.% NZSP sample used for Mott-Schottky experiments. Multiple temperatures are shown to illustrate the reason for choosing 70°C. The high frequency semicircle is the NZSP response, the intermediate frequency semicircle is the interfacial response. The lines are only meant as a guide to the eye, not an equivalent circuit fitting.