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Figure S1. (a,d) Cross-section SEM image and (b,c,e,f,g) EDX elemental mapping 

images of the initial pAlN substrate before HCl treatment.



Figure S2. SEM images of the pAlN substrate (a) before and (b) after HCl treatment.

Figure S3. Resistance value of the pAlN substrate (a) before and (b) after HCl 

treatment.

Figure S4. The wetting angles on Al foil using water, metal salt solution (mixture of 

LiNO3, Fe(NO3)3·9H2O and NH4H2PO4) and precursor solution (mixture of LiNO3, 

Fe(NO3)3·9H2O, NH4H2PO4 and CTAB).



Figure S5. The relationship between the mass loading and the infiltration times.

Figure S6. SEM image and EDX elemental mapping of the polished cross-section of 

the 3D LFP/pAlN electrode.



Figure S7. (a) TEM image and (b) HRTEM image of the nanoparticles ground from 

the 3D LFP/pAlN electrode.

Figure S8. TGA curves of sucrose, MWCNTs, CTAB and citric acid measured under 

air atmosphere.



Figure S9. N2 adsorption isotherms of (a) pAIN and (b) 3D LFP/pAIN electrode. Pore 

size distribution curves of (c) pAIN and (d) 3D LFP/pAIN electrode.



Figure S10. High-resolution XPS spectra of (a) C 1s, (b) Fe 2p, (c) O 1s and (d) P 2p 

for commercial carbon-coating pre-LFP NPs.

Figure S11. High-resolution XPS spectra of (a) O 1s and (b) P 2p for 3D LFP/pAlN 

electrode.



Figure S12. (a) Galvanostatic charge/discharge profiles of 3D LFP/pAlN electrode 

using different organic fuels (citric acid, urea and glycine) and (b) different amount of 

CTAB (50 mg, 100 mg, 150 mg).

Figure S13. XRD curves of the 3D electrode powder before and after galvanostatic 

charge/discharge cycles.



Figure S14. The SEM image of the 3D electrode after galvanostatic charge/discharge 

cycles.



Table S1. The calculation of porosity of Al foam.

Resistance (Ω) m (mg) thickness (mm) (g·cm-3)𝜌𝑓 Porosity

7.8
12
28
8

2.7
4.6
3.1
2.5
5.8
4.2
4

3.1

66.1
72.3
83.1
76.1
80.2
85.1
83.3
79.4
84.9
82.3
77.2
70.6

0.869
0.944
0.898
0.934
0.958
0.933
0.962
0.949
0.923
0.969
0.96
0.953

0.49
0.50
0.60
0.53
0.54
0.59
0.56
0.54
0.60
0.55
0.52
0.48

81.7
81.6
77.7
80.4
79.9
78.1
79.2
79.9
77.9
79.6
80.7
82.2

The porosity is calculated by:

-𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 = 1 𝜌𝑓 𝜌𝐴𝑙

The average porosity of Al foam is 79.9.

Table S2. The BET surface areas of pAIN and 3D LFP/pAIN electrode.

Sample SBET (m2g-1)

pAlN 24.37

3D LFP/pAlN electrode 14.20



Table S3. Performance comparison of 3D LFP/pAlN electrode with recently reported 

novel structure 3D electrodes using non-situ growth methods.

Electrode structure
Mass loading 

(mg cm-2)
Cycles

Areal capacity 
(mAh cm-2)

Ref.

3D LFP/pAlN electrode 65 100 6.56
This 
work

Magnetically aligned Fe3O4-modified 
graphite flakes

9.1 50 0.93 1

LiFePO4 slurry in wood-templating
60

(LiFePO4)
140 3.8 2

Copolymer-aligned structure of 
NMC811 secondary particle

50 50 8.84 3

LiFe0.7Mn0.3PO4 nanoplates on 3D 
graphene frameworks with aligned 

vertical channels
21.2 500 1.77 4

Electrophoretic deposition of 
LiFePO4 onto 3D carbon fiber cloth

20
(LiFePO4)

100 2 5

Micrometer-size bulk-porous 
Si/carbonized polyacrylonitrile 

composites
1.6 50 3 6

Thick porous LiFePO4/C 
composite electrodes by spark 

plasma sintering
≈150 20 21 7

Freestanding Li4Ti5O12/Super 
P/PVDF electrode

14 100 1.95 8



Table S4. Performance comparison of 3D LFP/pAlN electrode with recently reported 

porous and conductive 3D electrodes using in situ grown methods.

Electrode structure
Mass loading 

(mg·cm-2)
Cycles

Areal capacity 
(mAh·cm-2)

Ref.

3D LFP/pAlN electrode 65 100 6.56
This 
work

3-D nanoporous network composed 
of NiCuMn@oxide core@shell 

structures supported by an 
intercalary Cu film

6.9 (NiCuMn 
oxide)

100 6.1 9

FeOx porous nanoblocks array on 
Cu foam

2.5
(FeOx)

50 3.33 10

Outer few-layer NiO 
nanoflowers@medial NiO layer@Ni 

foam
- 100 1.45 11

Thick mesoporous Co3O4 nanosheet 
on Ni foam

4.15
(Co3O4)

30 4.39 12

Carbon-encapsulated Fe3O4 
nanospheres anchored on CNT 

network
0.8 500 0.32 13

LiMn2O4@C grown on CNT 2 1000 0.11 14

LiMn2O4@C grown on carbon 
nanofiber

2 1000 0.18 14

Carbon fiber cloth coated with 
exfoliated porous N-doped carbon 
fiber, NiO nanosheets, and carbon 

quantum dots

10.58 250 2.91 15

MoS2 nanoflakes grown on the twine 
carbon fibers of the carbonized 

cotton cloth

4.4
(MoS2)

35 5.2 16

Nb2O5@3D holey-graphene 
framework composites

6 10000 1 17
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