Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

High-Throughput Screening for Efficient Dual-Atom Catalysts in Electrocatalytic Nitrate Reduction to Ammonia via Dissociation-Association Mechanism

Lingling Lv,^{1,†} Yanging Shen,^{1,3,†,*} Min Zhou,¹ Yu Zhang,¹ Xianghui Meng,¹ Xin Yang, ¹Nan Zhang,¹ Kexin Wang,¹ Qirui He,¹ Dewei Gong,^{1,3}, Qing Ai,^{2,*} Yong Shuai,^{2,*} *Zhongxiang Zhou1,3, **

1 School of Physics, Harbin Institute of Technology, Harbin 150001, PR China

2 School of Energy Science and Engineering, Harbin Institute of Technology, Harbin,

150001, PR China

3 Heilongjiang Provincial Key Laboratory of Plasma Physics and Application Technology, Harbin Institute of Technology, Harbin 150001, PR China

† Contributed equally to this work

* Corresponding authors: Yanqing Shen. E-mail: shenyanqing2004@163.com

Qing Ai, E-mail: hitaiqing@hit.edu.cn

Yong Shuai, E-mail: shuaiyong@hit.edu.cn Zhongxiang Zhou. E-mail: zhouzx@hit.edu.cn

1 **COMPUTATIONAL METHOD**

2 In the path of NO_3RR to ammonia (NH_3), 9 protons and 8 electrons are transferred. 3 The whole reaction can be summarized as $NO_3^+ + 9H^+ + 8e^- \rightarrow NH_3 + 3H_2O[1]$. Firstly, 4 nitrate will be adsorbed on M1M2/g-C₃N₄, the equation is as follows (In which $*$ 5 represents M1M2/g-C₃N₄ substrates, *NO₃ represents NO₃ adsorption on M1M2/g-6 C3N⁴ substrate, *M represents the intermediate products M adsorption on M1M2/g-7 C_3N_4 substrate):

$$
* + NO_3 \rightarrow * NO_3 + e^-
$$
 (S1)

9 After the NO_3 , the first fork in the reaction path will appear, the NO_3H (equation S2, 10 S3) or *NO_2 (equation S4) will be generated:

$$
{}^{*}NO_{3} + H^{+} + e^{-} \rightarrow {}^{*}NO_{3}H
$$
\n
$$
(S2)
$$

$$
{}^{*}NO_{3}H^{+}H^{+} + e^{-} \rightarrow {}^{*}NO_{2} + H_{2}O
$$
\n
$$
(S3)
$$

$$
{}^{13} \text{ Or} \qquad {}^{*} \text{NO}_3 + 2\text{H}^+ + 2\text{e}^- \rightarrow {}^{*} \text{NO}_2 + \text{H}_2\text{O} \qquad (S4)
$$

14 After the NO_2 , the second fork in the reaction path will appear, the NO_2H (equation 15 S5, S6) or *NO (equation S7) will be generated:

$$
{}^{*}NO_{2} + H^{+} + e^{-} \rightarrow {}^{*}NO_{2}H
$$
\n
$$
(S5)
$$

$$
{}^{*}NO_{2}H^{+}H^{+} + e^{-} \rightarrow {}^{*}NO^{+}H_{2}O
$$
 (S6)

$$
{}^{18} \text{ Or} \qquad {}^{*}\text{NO}_2 + 2\text{H}^+ + 2\text{e}^- \rightarrow {}^{*}\text{NO} + \text{H}_2\text{O} \tag{S7}
$$

19 After the NO_2 , NOH will be generated:

$$
20 \qquad \qquad *NO + H^+ + e^- \to *NOH \tag{S8}
$$

21 After the *NOH, the third fork in the reaction path will appear, the *NHOH (equation 22 S9) or *N (equation S10) will be generated:

$$
23 \qquad *NOH + H^+ + e^- \to *HNOH \tag{S9}
$$

$$
24 \text{ Or} \qquad \qquad *NOH + H^+ + e^- \to *N + H_2O \qquad (S10)
$$

25 Whether for the *NHOH (equation S11) or *N (equation S12), the next step the *NH 26 will be generated:

S3 ¹ (S11) - ² *HNOH+H e *NH+H O 2 Or (S12) - *N+H e *NH 3 After *NH, NH³ will be generated progressively: ⁴ (S13) - ² *NH+H e *NH ⁵ (S14) - ² ³ *NH +H e *NH 6 (S15) ³ ³ *NH *+NH 7 8 NO may be produced after the *NO of the reaction of NO3RR to NH3: 9 *NO *+NO (S16) 10 NO may be produced after the *NO² of the reaction of NO3RR to NH3: 11 (S17) ² ² *NO *+NO 12 N² may be produced after the *NO of the reaction of NO3RR to NH3: 13 (S18) ² ² *NO+*NO *N O ¹⁴ (S19) - ² ² ² ² *N O +H e *N O H ¹⁵ (S20) - ² ² ² ² *N O H+H e *N O+H O ¹⁶ (S21) - ² ² *N O+H e *N OH ¹⁷ (S22) - ² ² ² *N OH+H e *N +H O 18 (S23) ² ² *N *+N 19 N² also may be produced after the *N of the reaction of NO3RR to NH3: 20 (S24) ² *N+*N **N 21 22 The potential limiting steps of the NO3RR to NH³ reaction are 23 and , which determine whether the - *NO+H e *NOH - ² ³ *NH +H e *NH 24 M1M2/g-C3N⁴ can perform the NO3RR to NH³ reaction. Limiting potential required for 25 the reaction can be determined by calculating the Gibbs free energy in both steps: *U*^L =

1 $\neg \Delta G_{\text{Max}}/e$, in which ΔG_{Max} is the maximum value for each order of free energy change.

 The Gibbs free energy change ∆*G* are calculated according to the computational hydrogen electrode (CHE) model proposed by Nørskov et al: [2]

$$
\Delta G = \Delta E + \Delta E_{\text{ZPE}} - T\Delta S + \Delta G_U \tag{S25}
$$

 where ∆*E* represents the change of total energy of the intermediate before and after adsorption, Δ*E*ZPE and *T*Δ*S* are the zero-point energy difference and the entropy, 8 respectively. $\Delta G_U = -eU$ represents the influence of electrode potential on ΔG .

9 The adsorption energy of NO_3 on $M1M2/g-C_3N_4$ substrate is calculated with 10 $\Delta G_{N_{N_{\text{O}_3}}} = G_{N_{N_{\text{O}_3}}} - G_{N} - G_{H N_{\text{O}_3}(g)} + 0.5 G_{H2(g)} + \Delta G_{\text{correct}}$, in which $G_{N_{N_{\text{O}_3}}}$ and G_{N} represent the 11 energy of M1M2/g-C₃N₄ with anchored NO₃⁻ and pure M1M2/g-C₃N₄, $G_{HNO3(g)}$ and 12 *G*_{H2(g)} express the energy of HNO₃ and H₂ molecules in the gas phase, $\Delta G_{\text{correct}} = 0.392$ eV. [[2\]](#page-3-0)

14 The transition state is completed with the complete LST/QST method. The spin- polarized AIMD (ab initio molecular dynamic) simulation under a constant volume and temperature (NVT) ensemble are fulfilled using the Dmol3 package [3], and the initial temperature is set to 300 K and 800 K.

 An implicit water solvent environment is simulated in the Dmol3 package, which includes certain the conductor-like screening model (COSMO) controlsthat can be used to simulate a solvent environment for the calculation [4,5]. Core electrons are processed with All Electrons and the double numerical plus polarization (DNP) is used as the basis 22 set. $3 \times 3 \times 1$ k-point grids, which the same as in the case of CASTEP, is selected. The 1 DFT-D and spin-polariton are also applied.

2 When calculating the Surface Pourbaix diagrams [6], the following hydrolysis 3 reactions are taken into account:

$$
\boldsymbol{4}
$$

4
$$
{}^{*}O_{m}H_{n} + (2m-n)(H^{+} + e^{-}) \rightarrow {}^{*}+mH_{2}O
$$
 (S26)

5 where *m* and *n* are the number of oxygen and hydrogen atoms of the adsorbate, 6 respectively. The free energy changes involving electric potential and pH are calculated 7 using:

8
$$
\Delta G = G_* + m G_{H_2O} - G_{*_{\text{OmHn}}} - (2 m - n)(0.5 G_{H_2} - U_{\text{SHE}} - 2.303 k_B T p H)
$$
 (S27)

9 where U_{SHE} is the potential relative to the standard hydrogen electrode (SHE), k_B is the 10 Boltzmann constant $(8.617343 \times 10^{-5} \text{ eV K}^{-1})$, *T* is the temperature.

11

RESULTS AND DISCUSSIONS

	$E_{\rm f}$	$U_{\text{diss}}^0(\text{metal,bulk})$	$N_{\rm e}$	$U_{\rm diss}$
TiTi	-3.06	-1.63	$\overline{2}$	-0.10
TiV	-2.86	-1.41	$\overline{2}$	0.03
TiCr	-4.10	-1.27	$\sqrt{2}$	0.78
TiMn	-2.90	-1.41	$\overline{2}$	0.04
TiFe	-3.08	-1.04	$\overline{2}$	0.50
TiCo	-2.95	-0.96	$\sqrt{2}$	0.52
TiNi	-3.82	-0.95	$\overline{2}$	0.96
TiCu	-5.04	-0.65	$\sqrt{2}$	1.87
VV	0.36	-1.18	$\sqrt{2}$	-1.36
VCr	-3.23	-1.04	$\overline{2}$	0.57
$\ensuremath{\text{VMn}}$	0.54	-1.19	$\sqrt{2}$	-1.45
VFe	-1.82	-0.82	$\sqrt{2}$	0.09
VC ₀	-2.06	-0.73	$\mathbf{2}$	$0.30\,$
VNi	-3.40	-0.72	$\overline{2}$	0.98
VCu	-3.91	-0.42	$\sqrt{2}$	1.54
CrCr	-4.01	-0.91	$2\,$	1.09
CrMn	-3.04	-1.05	$\sqrt{2}$	0.47
CrFe	-3.09	-0.68	$\sqrt{2}$	0.87
CrCo	-3.32	-0.60	$\mathbf{2}$	1.07

Table S1. The formation energy $E_{\rm f}$ and dissolution potential $U_{\rm diss}$ of M1M2/g-C₃N₄

	$\Delta G^*NO^{-*}NOH$	Δ G*NH ₂ -*NH ₃	$U_{L}(V)$	$\Delta G_{^*\rm NO3}$	$\Delta G\rm{*_{H}}$
TiV	2.23	0.78	-2.23	-2.76	-0.85
TiCr	1.08	0.69	-1.08	-2.28	-1.28
TiMn	$0.61\,$	0.50	-0.61	-1.88	-0.44
TiFe	0.04	0.21	-0.21	-2.38	-0.77
TiCo	0.16	0.56	-0.56	-2.46	-0.78
TiNi	0.10	0.88	-0.88	-1.85	-0.76
TiCu	0.42	-0.05	-0.42	-0.98	0.23
VCr	0.77	0.81	-0.81	-1.74	-1.04
VFe	0.38	0.62	-0.62	-2.09	-0.80
VCo	0.25	0.74	-0.74	-2.18	-0.66
VNi	0.57	1.14	-1.14	-1.32	-0.80
VCu	1.23	0.20	-1.23	-0.69	0.06
CrCr	0.61	0.16	-0.61	-1.54	$0.06\,$
CrMn	0.65	0.67	-0.67	-1.72	-1.17
CrFe	1.02	0.89	-1.02	-1.13	-1.10
CrCo	1.15	0.67	-1.15	-0.96	-0.83
CrNi	0.81	0.56	-0.81	-0.77	-1.10
CrCu	0.78	0.40	-0.78	-1.63	-1.14
MnCo	0.92	0.25	-0.92	-1.63	-0.65

Table S2. The computation details for calculating the potential determining steps ΔG*NO-*NOH, Δ G*NH₂-*NH₃, limiting potentials U_L, G_{*NO3} and G_{*H}.

	$1-\Delta G*_{NO3}$	$2-\Delta G*_{NO3}$	$3-\Delta G*_{NO3}$	1-O end- $\Delta G_{\rm *NO3}$	$\Delta G_{^*\rm NO3}$
TiV	-2.69	-1.93	-2.76	-2.28	-2.76
TiCr	-2.21	-1.62	-2.28	-1.58	-2.28
TiMn	-1.88	-1.70	-1.65	-1.30	-1.88
TiFe	-2.11	-1.83	-2.38	-1.62	-2.38
TiCo	-1.86	-2.05	-2.46	-1.54	-2.46
TiNi	-1.37	-1.57	-1.85	-0.65	-1.85
TiCu	-0.25	-0.98	-0.11	0.24	-0.98
VCr	-1.74	-1.56	-1.64	-1.31	-1.74
VFe	-2.01	-1.89	-2.09	-1.57	-2.09
VCo	-1.76	-1.74	-2.18	-1.35	-2.18
VNi	-0.74	-0.98	-1.32	-0.35	-1.32
VCu	-0.17	-0.69	0.06	0.36	-0.69
CrCr	-0.93	-1.54	-1.04	-0.50	-1.54
CrMn	-1.56	-1.72	-1.47	-0.91	-1.72
CrFe	-1.13	-0.80	-1.06	-0.49	-1.13
CrCo	-0.91	-0.96	-0.85	-0.55	-0.96
CrNi	4.83	-0.40	-0.77	-0.35	-0.77
CrCu	-1.39	-0.94	-1.63	-1.17	-1.63
MnCo	-1.58	-0.65	-1.63	-1.19	-1.63

Table S3. The adsorption energies of nitrate on the 2O-end configurations: position 1, position 2, position 3 and the 1O-end configurations (position marked on red) of $M1M2/g-C_3N_4$, in which the red color represents the most stable adsorption configuration.

	Δ G*NO-*NOH	Δ G*NO-*NOH	Δ G*NH ₂ -*NH ₃	Δ G*NH ₂ -*NH ₃
	(without sol)	(with sol)	(without sol)	(with sol)
TiFe	0.04	0.004	0.21	-0.30
FeCu	0.37	0.47	0.15	-0.10
NiCu	-0.21	-0.21	0.32	0.36

Table S4. Comparisons of Gibbs free energies for the potential-determining steps without and with solvation for TiFe/g-C3N4, FeCu/g-C3N⁴ and NiCu/g-C3N4.

Table S5. The catalytic performance of TiFe/g-C₃N₄ catalysts with different N atomic number coordination are also considered. By changing the number of N atoms around TiFe bimetallic atoms, the regulatory effect of microenvironment changes on the catalytic performance of TiFe/g-C₃N₄ dual atom catalysts are explored. From the table below, it can be seen that TiFe/g-C₃N₄ catalyst with 6 N atom number coordination shows the best catalytic performance (0.21 eV). As the number of N atoms gradually decreases, the stronger its adsorption effect on nitrate (TiFe-5N/g-C3N4: −2.59 eV; TiFe-5N/g-C3N4: −2.72 eV), the greater the Gibbs free energy of its potential determining step (TiFe-5N/g-C3N4: 0.80 eV; TiFe-5N/g-C3N4: 0.88 eV), which means that its catalytic performance is getting worse and worse.

Figure S1 In order to select a suitable cut-off energy, convergence tests for TiFe/g-C3N4, FeCu/g-

 C_3N_4 and $NiCu/g-C_3N_4$ are performed.

Figure S2 The optimized models of M1M2/g-C₃N₄.

Figure S3 The optimized models of nitrate adsorption on M1M2/g-C₃N₄.

Figure S4. The AIMD of TiFe/g-C₃N₄, FeCu/ g-C₃N₄ and NiCu/ g-C₃N₄ in temperature of a) 300 K and b) 800 K.

Figure S5. (a)-(h) The relationship of d-band centers of M2 single atom and $\Delta G * NO_3$, (i) The relationship of d-band centers of M1M2 dual-atoms and Δ G*NO₃.

Figure S6. The transition states for TiFe/g-C₃N₄ to perform *NO₃-*NO₂+*O and *NO₂-*NO+*O dissociation reaction.

Figure S7. Optimized structure of TiFe coordinated with different N atomic numbers. a) 6 N atoms, b) 5 N atoms and c) 4 N atoms.

REFERENCE

[1] Wang, Y.; Yu, Y.; Jia, R.; Zhang, C.; Zhang, B. Electrochemical Synthesis of Nitric Acid from Air and Ammonia through Waste Utilization. *Natl. Sci. Rev.* 2019, **6**, 730.

[2] Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard,

T.; Jónsson, H.; Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode, *J. Phys. Chem. B* 2004, **108**, 17886-17892.

[3] M. Krack, M. Parrinello, All-electron ab-initio molecular dynamics, *J. Chem. Soc. Faraday Trans.*, 2000, **2**, 2105–2112.

[4] A.D. Becke, A new mixing of Hartree–Fock and local density-functional theories, *J. Chem. Phys.* 1993, **98**, 1372–1377.

[5] B. Delley, Hardness conserving semi local pseudopotentials, *Phys. Rev. B* 2002, **66**, 155125.

[6] G. Di Liberto, L. Giordano, G. Pacchioni, Predicting the Stability of Single-Atom Catalysts in Electrochemical Reactions, *ACS Catal.* 2024, **14**, 45−55.