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1. Materials

p-Diethynylbenzene (PEB, 97%) was purchased from Energy Chemical (Shanghai, China). 

bis(triphenylphosphine)palladium (II) dichloride (Pd(PPh3)2Cl2, 98%) and Cuprous Iodide 

(CuI, 98%) were purchased from Heowns Biochemical Technology Co., Ltd. (Tianjin, China). 

N,N-dimethylformamide (DMF, GR), trimethylamine (TEA, GR), were obtained from Kermel 

Chemical Reagent Co., Ltd (Tianjin, China). 3,7-dibromodibenzo[b,d]thiophene 5,5-dioxide 

was prepared based on reported methods.1

Potassium ferrate (K2FeO4, 95%, black powder) was purchased from Maya Reagent Co., Ltd 

(Jiaxing, China). Methylene Blue (MB, AR), Triethanolamine (TEOA, 99%) was purchased 

from Aladdin Biochemical Technology Co., Ltd (Shanghai, China). Ofloxacin (OFL, 98%) 

was purchased from McLean Reagent Co., Ltd (Shanghai, China). High-purity water is self-

made in the laboratory, and the conductivity is not lower than 18 MΩ·cm.

2. Characterizations

X-ray diffraction (XRD) patterns were recorded using a D8-Focus X-ray diffractometer 

(BRUKER AXS GMBH) equipped with Cu Kα radiation at 40 kV and 40 mA at a scan rate of 

8°/min. FT-IR spectra were obtained on a Nicolet 6700 FT-IR spectrometer. Scanning electron 

microscopy (SEM) images were observed using an APREO field-emission scanning electron 

microscope. High-resolution transmission electron microscopy (HR-TEM) observations were 

carried out using a JEM-F200 transmission electron microscope (JEOL) with a field emission 

gun operating at 200 kV. UV-vis diffuse reflectance spectra (UV-vis DRS) were recorded with 

a Shimadzu UV-2600 spectrometer equipped with a 60 mm diameter integrating sphere using 

BaSO4 as the reflectance sample. X-ray photoelectron spectrum (XPS) was conducted to 

analysis with a K-Alpha+ X-ray photoelectron spectroscope (ThermoFisher Scientific, UK), 

using Al Kα as the X-ray source. The analyzer’s output spectrum was calibrated based upon 

the binding energy of contaminated C 1s (284.80 eV) under vacuum conditions of 5×10-8 Pa. 

The X-ray absorption fine structure spectroscopy (XAFS) was performed by Table XAFS-

500A (Anhui Chuangpu Instrument Technology Co., Ltd) equipped with Mo target. The raw 

XAFS data were preprocessed following the conventional procedure: background removal, 

normalization, Fourier transformation to k-space, and k3 weighted EXAFS oscillations. The 

BET surface area was measured by a Micromeritics ASAP 2020 Automatic Specific Surface 

Area and Porosity Analyzer. The steady-state photoluminescence (PL) measurement was 

measured by a FLS1000 (Edinburgh) fluorescence spectrophotometer with the excitation light 

set at 375 nm. Time resolved fluorescence decay spectra were also measured by the 
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spectrophotometer at 298 K. Electron spin resonance (ESR) spectra were examined by an 

electron paramagnetic resonance spectrometer (JES-FA200, JEOL) under visible light 

irradiation (λ ≥ 420 nm).
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Table

Table S1. Specific Surface Area and Pore Volume of Different Samples

Samples Surface Area 
m²/g

Mesopore Volume 
cm³/g

Micropore Volume 
cm³/g

α-Fe2O3 82.18 0.3458 0.03082
PEB-DBT 72.39 0.2465 0.03451

FPD-1 72.91 0.2595 0.04672
FPD-2 63.53 0.1795 0.02996
FPD-3 69.82 0.1816 0.03420

Table S2. Fitting Results of Different Kinetic Models for OFL Degradation
Kinetic 
Models Parameter PEB-DBT FPD-1 FPD-2 FPD-3

k0(mg L-1 min-1) 0.61891 1.63299 1.98976 1.18249Zero-order
R2 0.98997 0.9607 0.97681 0.98509
k1(min‒1) 0.01849 0.08207 0.18786 0.04442First-order
R2 0.97973 0.89296 0.85343 0.95274

k2(L/(mg·min)) 5.581*10-4 0.00507 0.04837 0.00177Second-
order R2 0.96619 0.83134 0.78177 0.911

Table S3. Fitting Results of Different Kinetic Models for MB Degradation
Kinetic Models Parameter PEB-DBT FPD-2

k0(mg L-1 min-1) 3.39239 0.33602Zero-order
R2 0.9573 0.9898
k1(min‒1) 0.02278 0.01182First-order
R2 0.99832 0.9822

k2(L/(mmol·min)) 0.00119 4.30754*10-4Second-order
R2 0.97586 0.94947

The Zero-order, first-order, and second-order model have been described below2: 

Zero-order kinetic model:

C0-Ct = k0t

First-order kinetic model:

ln (Ct/C0) = -k1t

Second-order kinetic model:

1/Ct–1/C0 = k2t

C0 and Ct represent the initial OFL/MB concentration (mg/L) and OFL/MB concentration 

(mg/L) at sample time t (min), respectively. k0, k1, and k2 are the zero-order, first-order, and 

second-order kinetic rate constant, respectively.
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Figure

Fig. S1 BET adsorption desorption isotherm of the samples.

Fig. S2 Micropore distribution of the samples.
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Fig. S3 Mesopores distribution of the samples.

Fig. S4 Fe K-edge XANES spectrum of α-Fe2O3 and FPD-2.
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Fig. S5 Steady-state fluorescence intensity spectrum of the samples.

Fig. S6 Transient fluorescence lifetime spectrum of the samples.
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Fig. S7 Scavenger quenching effects on OFL degradation using FPD-2.

Fig. S8 Hydrogen evolution rate of FPD-2 when degrading OFL with different concentration.
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Fig. S9 MB degradation performance of the FPD-2.

The sensitization effect of MB can be ignored in this work. For the MB degradation process 

with single PEB-DBT, the CB level of MB (-0.25 eV) is more positive than PEB-DBT (-0.83 

eV). Therefore, the MB can not act as a dye sensitizer to transfer electrons from MB to PEB-

DBT. For the MB degradation process with FPD-2, the CB level of MB (-0.25 eV) is more 

negative than α-Fe2O3 (0.34 eV). Although electrons can transfer from MB to α-Fe2O3, the 

electrons on the CB of α-Fe2O3 can not reduce O2 to form ∙O2
- (E0 = -0.33 V vs. NHE). Thus, 

the MB degradation performance is suppressed rather than improved by dye sensitizer (Fig. 

S9).
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Fig. S10 UV-vis DRS spectra of the samples.

Fig. S11 K-M transformation data of Fe2O3 and PEB-DBT.
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Fig. S12 MS chromatograms for the intermediates (P348, P318a, P318b P392a, P392b, 

P336a, P336b P364a and P364b) of OFL degradation.
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Fig. S13 MS chromatograms for the intermediates (P378, P261, P279 P221 and P149) of 

OFL degradation.
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