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Characterization

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of 4 

cm-1 by using the KBr disk method. 13C nuclear magnetic resonance (NMR) spectra were examined 

by using an INOVA 500 instrument with DMSO as the solvent and TMS as the external standard. 

Chemical shifts are reported in parts per million (ppm). The curing behavior and thermal stabilities 

of the samples were performed by using a TG Q-50 thermogravimetric analyzer under a N2 

atmosphere; the cured sample (ca. 5 mg) was put in a Pt cell with a heating rate of 20 °C min–1 from 

100 to 800 °C under a N2 flow rate of 60 mL min-1. Wide-angle X-ray diffraction (WAXD) patterns 

were measured by the wiggler beamline BL17A1 of the National Synchrotron Radiation Research 

Center (NSRRC), Taiwan. A triangular bent Si (111) single crystal was used to get a monochromated 

beam having a wavelength (λ) of 1.33 Å. The morphologies of the polymer samples were examined 

by Field emission scanning electron microscopy (FE-SEM; JEOL JSM7610F) and transmission 

electron microscope (TEM) using a JEOL-2100 instrument at an accelerating voltage of 200 kV. 

Surface area and porosity measurements of samples weighing approximately 40-60 mg were 

conducted using the BEL MasterTM/BEL simTM (version 3.0.0) apparatus. Nitrogen (N2) adsorption 

and desorption isotherms were generated by gradually exposing the samples to ultrahigh-purity N2 

gas, reaching pressures of up to about 1 atmosphere, while maintaining a temperature of 77 K in a 

liquid nitrogen bath. Prior to these measurements, the samples underwent a degassing process at 150 

°C for a duration of 8 hours. The instrument's software was utilized to calculate surface parameters 

using the BET adsorption models. Furthermore, the pore size of the prepared samples was determined 

using nonlocal density functional theory (NLDFT).
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Synthesis of 1,3,6,8-tetrabromopyrene (Py-Br4)

Pyrene (1.00 g,5 mmol) was dissolved in nitrobenzene (10 mL) and a solution of bromine (1.15 mL, 

22 mmol) with nitrobenzene (10 mL) was added dropwise into it, the mixture was heated up to 120°C 

for 4 h and then cooled to room temperature, the reaction mixture was filtered, washed with ETOH 

and dried under vacuum at 50°C to afford a green solid (2.20 g, 91%). FT-IR (KBr): 3053 (aromatic 

C–H stretching), 682 (C–Br stretching). 

 

Synthesis of 1,3,6,8-tetrakis(2-(trimethylsilyl)ethynyl)pyrene (Py-TMS)

Under nitrogen, Pd(PPh3)4 (220 mg, 0.12 mmol), PPh3 (244 mg, 0.92 mmol), and CuI (118 mg, 0.62 

mmol) were added to 1,3,6,8-tetrabromopyrene (2 g, 2.38 mmol) in a mixed solvent of dry toluene 

(28 mL) and triethylamine (28 mL). After being heated up to 50°C, TMSA (2.34 g, 23.8 mmol) was 

injected dropwise into the flask, and the mixture was stirred under 90°C for 48 h, the reaction mixture 

was cooled to room temperature and filtered through Celite. Then, the solvent was removed under 

reduced pressure to give an orange solid. FT-IR (KBr, cm-1): 3053 (aromatic C–H stretching), 2908 

(aliphatic C–H stretching), 2100 (C≡C stretching), 1618 (C=C stretching). 1H NMR (500 MHz, δ, 

ppm, CDCl3): 0.413 (s, 36H, CH3), 8.3 (s, 2H), 8.57 (s, 4H). 13C NMR (125 MHz, δ, ppm, CDCl3): 

135.70, 132.40, 127.80, 119.20, 103.50, 101.60.

Synthesis of 1,3,6,8-tetraethynylpyrene (Py-T)

1,3,6,8-tetrakis(2-(trimethylsilyl)ethynyl)pyrene (2.00 g, 3.41 mmol) and K2CO3 (5.70 g, 42 mmol) 

were added in one neck flask with anhydrous methanol (50 mL)and the reaction mixture was stirred 

at room temperature for 48 h. The methanol solution was removed under reduced pressure to afford 

1,3,6,8-tetraethynylpyrene as an orange powder (1.88 g, 94.30%, Scheme S1). FT-IR (KBr, cm-1, 

Figure S1): 3279 (≡C-H), 3065 (aromatic C–H stretching), 2186 (C≡C stretching), 1618 (C=C 
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stretching).1H NMR (500 MHz, δ, ppm, CDCl3, Figure S2): 8.68 (s, 4H), 8.38 (s, 2H), 3.67 (s, 4H). 

13C NMR (125 MHz, δ, ppm, CDCl3, Figure S3): 133.80, 130.80, 129.10, 127.80, 84.50, 59.70.

Synthesis of Tetraphenylethylene (TPE) and 1,1,2,2-Tetrakis(4-bromophenyl)ethene (TPE-Br4)

under N2, benzophenone (3.00 g, 16.4 mmol) and Zn (4.31g, 65.9 mmol) in THF (80 mL) were stirred 

in an ice/salt-water bath for 10 min. TiCl4 (3.60 mL, 33.0 mmol) was injected over 30 min, and then 

the mixture was kept at 80 °C under reflux. Then, 5% aqueous K2CO3 was added to the reaction. After 

evaporation of the organic solvent, EtOAc extracted the aqueous phase three times. After evaporation 

of EtOAc, the residue was washed with EtOH to obtain a white crystalline solid (2.66 g, 97%). M.p.: 

228–229 °C (DSC).  FTIR (KBr, cm–1): 3047 (aromatic C–H stretching), 1602 (C=C stretching). 1H 

NMR (500 MHz, CDCl3, δ, ppm): 7.26 (d, 8H), 6.84 (d,  8H). 13C NMR (125 MHz, CDCl3, δ, ppm): 

140.70, 141.00, 131.30, 127.70, 126.4. A solution of TPE (3.32 g, 10.0 mmol) in glacial acetic acid 

(10 mL) and CH2Cl2 (20 mL) in a round-bottom flask at 0 °C (ice bath). Br2 (4.00 mL, 80.0 mmol) 

was added to the mixture, and the mixture was kept at room temperature for 48 h. Then, the H2O (200 

mL) was added to the resulting solution, and the mixture was extracted with CH2Cl2. After 

evaporation of CH2Cl2, the residue was washed with MeOH to give a white solid, which was 

recrystallized (CH2Cl2/MeOH) to give TPE-Br4 a white crystalline solid (6.15 g, 95%). M.p.: 261–

262 °C (DSC).  FTIR (KBr, cm–1): 3051 (aromatic C–H stretching), 1572 (C=C stretching). 1H NMR 

(500 MHz, CDCl3, δ, ppm): 7.25 (d, 8H), 6.84 (d, 8H). 13C NMR (125 MHz, CDCl3, δ, ppm): 142.30, 

139.70, 133.70, 131.90, 121.80.

1,1,2,2-Tetrakis(4-((trimethylsilyl)ethynyl)phenyl)ethane (TPE-TMS)

A mixture of TPE-Br4 (1.00 g, 1.54 mmol), CuI (0.0470 g, 0.240 mmol), PPh3 (0.100 g, 0.380 mmol), 

and Pd(PPh3)4 (0.0860 g, 0.120 mmol) in THF (14 mL) and Et3N (14 mL) was stirred in a two-neck 

flask at 50 °C for 30 min. Ethynyltrimethylsilane (1.21 g, 12.3 mmol) was added dropwise and then 
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the mixture was heated under reflux at 50 °C for 3 days. The resulting mixture was filtered and 

concentrated. The residue was purified through flash chromatography (SiO2; DCM) to give a white 

powder (0.75 g, 75%). FTIR (KBr, cm–1): 3060 (aromatic C–H stretching), 2920 (aliphatic C–H 

stretching), 2155 (C≡C stretching), 1618 (C=C stretching). 1H NMR (500 MHz, CDCl3, δ, ppm): 7.24 

(d, J = 8.4 Hz, 8H), 6.88 (d, J = 8.4 Hz, 8H), 0.22 (s, 36H, CH3). 13C NMR (125 MHz, CDCl3, δ, 

ppm): 144, 141, 132.7, 132, 122.3, 105.6, 95.8, 0.07.

1,1,2,2-Tetrakis(4-ethynylphenyl)ethene (TPE-T)

A mixture of TPE-TMS (0.440 g, 0.650 mmol) and K2CO3 (0.900 g, 6.52 mmol) in methanol (10 

mL) was stirred at room temperature overnight. The pale-yellow precipitate [Scheme S2] was filtered 

off and dried [0.37 g, 93%: Tm: 155.5 °C (DSC)]. FTIR (KBr, cm–1, Figure S4): 3273 (≡C–H), 3042 

(aromatic C–H stretching), 2109 (C≡C stretching), 1617 (C=C stretching). 1H NMR (500 MHz, 

CDCl3, δ, ppm, Figure S5): 7.24 (d, J = 8.4 Hz, 8H), 6.93 (d, J = 8.4 Hz, 8H), 3.06 (s, 4H, ≡C–H). 

13C NMR (125 MHz, CDCl3, δ, ppm, Figure S6): 143.8, 141.6, 132.36, 132, 121.24, 83.6 (≡C–Ar), 

77.88 (≡C–H).

Photocatalytic H2 evolution tests

Electrochemical impedance spectroscopy (EIS) 

Electrochemical impedance spectroscopy (EIS)  was performed on a Zahner Zennium E workstation 

equipped with three-electrode cells including a Pt wire counter electrode, Ag/AgCl as reference 

electrode (3M NaCl), and a fluorine-doped tin oxide (FTO) glass as a working electrode. About 5 mg 

of CMPs were dispersed into an acetonitrile solution (1 mL) with 30 µL Nafion and sonicate for 1 h. 

After that, 200 µL of as-prepared suspension was spin-coated on FTO glass with an active area of 

6.875 cm2. Here, 0.5 M Na2SO4 aqueous solution was prepared as an electrolyte.

Photocatalytic H2 evolution test
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The photocatalytic experiments were carried out in a 35 mL Pyrex reactor. The reactor was closed 

using a rubber septum. In a typical photocatalytic reaction, TPA-TPA CMP or TPE-TPA CMP or Py-

TPA CMP or TPA-TB-TPA CMP or TPE-TB-TPA CMP or  Py-TB-TPA CMP (1 mg) was dispersed 

in 10 mL of the mixture of water/methanol (2/1) with 0.1M AA as the sacrificial electron donor. The 

suspension was purged with argon for 5 min to remove dissolved air. A 350 W Xenon lamp equipped 

with a cut-off filter (1000 W/m2, λ: 380-780 nm) was used as the light source. The light intensity of 

the Xe lamp was similar to that of the visible light region in standard 1 sun, as verified using a solar 

cell. Hydrogen samples were taken with a gas-tight syringe and injected in a Shimazhu GC-2014 gas 

chromatograph with Ar as the carrier gas. Hydrogen was detected with a thermal conductivity 

detector, referring to the standard hydrogen gases with known concentrations. 

Quantum efficiency measurements

In the AQY experiments, the catalyst solution was prepared by dispersing Py-TB-TPA CMP (1 mg) 

in 10 mL of the mixture of water/methanol (2/1) with 0.1M AA as sacrificial electron donor and 

cocatalyst (2 wt% Pt). The suspension was illuminated with a 300 W Xe lamp with different bandpass 

filters (420, 460, 500, and 600 nm). The formation of hydrogen was quantified using a Shimadzu gas 

chromatograph (GC2014) operating at isothermal conditions using a semi-capillary column equipped 

with a thermal conductivity detector. 

The AQY was calculated as follows:

AQY = [(Number of evolved hydrogen molecules ×2) / Number of incident photons] × 100%. 

The AQY was calculated as follows:

AQY = [(Number of evolved hydrogen molecules ×2) / Number of incident photons] × 100%
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Where M is the amount of H2 molecules (mol), NA is Avogadro constant (6.022 × 1023/mol), h is the 

Planck constant (6.626 × 10-34 J⋅s), c is the speed of light (3 × 108 m/s), S is the irradiation area (cm2), 

P is the intensity of irradiation light (W/cm2), t is the photoreaction time (s), λ is the wavelength of 

the monochromatic light (m).

The experimental details for DFT calculations

Density functional theory (DFT) is a computational method used to calculate the electronic structure 

of atoms, molecules, and materials. DFT calculations can be used to predict various properties of 

these systems, such as their geometry, electronic properties, and vibrational frequencies. The ground 

state geometry optimization of the CMPs molecules is implemented using Density Functional Theory 

(DFT) whilst applying the methods of B3LYP at 6-31G (d) basis set method at Gaussian 16 revision 

A.03 program package. The obtained result was then visualized using the Gauss View 5 software. 
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Scheme S3. Synthesis of TPA-3Br.
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Scheme S4. Synthesis of TPA-3B(OCH3)2.
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Scheme S5. Synthesis of TPA-TMS.
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Scheme S6. Synthesis of TPA-T.
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Scheme S7. Synthesis of TPA-TPA CMP.
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Scheme S8. Synthesis of TPE-TPA CMP.
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Scheme S9. Synthesis of Py-TPA CMP.
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Scheme S10. Synthesis of TPA-TB-TPA CMP.
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Scheme S11. Synthesis of TPE-TB-TPA CMP.
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Scheme S12. Synthesis of Py-TB-TPA CMP.
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Figure S1. FT-IR spectrum of Py-T.
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Figure S3. 13C NMR spectrum of Py-T.
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Figure S4. FT-IR spectrum of TPE-T.
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Figure S6. 13C NMR spectrum of TPE-T.



26

4000 3500 3000 2500 2000 1500 1000

   C=C
1618 cm-1

C-H aromatic
  3078 cm-1

Ab
so

rb
an

ce
 (a

.u
.)

 

Wavenumber (cm-1)

 

 

Figure S7. FT-IR spectrum of TPA-3Br.
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Figure S8. 1H NMR spectrum of TPA-3Br. * is the peak for CDCl3.
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Figure S9. 13C NMR spectrum of TPA-3Br.
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Figure S14. 1H NMR spectrum of TPA-TMS. * is the peak for CDCl3.
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Figure S15. 13C NMR spectrum of TPA-TMS. * is the peak for CDCl3.
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Figure S17. 1H NMR spectrum of TPA-T. * is the peak for CDCl3.
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Figure S18. 13C NMR spectrum of TPA-T. * is the peak for CDCl3.
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Figure S19.  Solubility test of (a) TPA-TPA CMP, TPE-TPA CMP, and Py-TPA CMP and (b) TPA-

TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP in THF, DMF, DCM and MeOH; 

respectively.
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Figure S20.  FTIR profiles of TPA-3B(OCH3)2, TPA-3Br and TPA-TPA CMP, were recorded at 

room temperature.
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Figure S21.  FTIR profiles of TPA-3B(OCH3)2, TPE-4Br, and TPE-TPA CMP, were recorded at 

room temperature.
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Figure S22.  FTIR profiles of TPA-3B(OCH3)2, Py-4Br and Py-TPA CMP, were recorded at room 

temperature.
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Figure S23. TGA profiles of (a) TPA-3B(OCH3)2, TPA-3Br and TPA-TPA CMP, (b) (a) TPA-

3B(OCH3)2, TPE-4Br and TPE-TPA CMP and (c) TPA-3B(OCH3)2, Py-4Br and Py-TPA CMP.
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Figure S24.  FTIR profiles of TPA-T, TPA-3Br, and TPA-TB-TPA CMP, were recorded at room 

temperature.
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Figure S25.  FTIR profiles of TPE-T, TPA-3Br and TPE-TB-TPA CMP, were recorded at room 

temperature.
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Figure S26.  FTIR profiles of Py-T, TPA-3Br and Py-TB-TPA CMP, were recorded at room 

temperature.
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Figure S27. TGA profiles of (a) TPA-T, TPA-3Br, and TPA-TB-TPA CMP, (b) (a) TPE-T, TPA-

3Br, and TPE-TB-TPA CMP, and (c) Py-T, TPA-3Br and Py-TB-TPA CMP.
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Figure S28. XPS spectra of (a) TPA-3B(OCH3)2, TPA-3Br, TPE-4Br and Py-4Br and  (b) TPA-T, 
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Figure S29. XPS spectra of (a) TPA-TPA CMP, TPE-TPA CMP and Py-TPA CMP and (b) TPA-

TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP. 
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Figure S30.  XRD profiles of TPA-3B(OCH3)2, TPA-T, TPA-3Br, TPE-4Br and Py-4Br, recorded at 

room temperature.
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Figure S31. XRD spectra of (a) TPA-TPA CMP, TPE-TPA CMP, and Py-TPA CMP and (b) TPA-

TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP. 
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Figure S32. SEM images of Py-TPA CMP. 
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Figure S33. SEM-EDS mapping of (a) TPA-TPA CMP, (b) TPE-TPA CMP, and (c) Py-TPA CMP. 
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Figure S34. SEM-EDS mapping of (a) TPA-TB-TPA CMP, (b) TPE-TB-TPA CMP, and (c) Py-

TB-TPA CMP. 
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Figure S35. PL spectra of Py-TPA CMP, TPE-TPA CMP, TPA-TPA CMP,  Py-TB-TPA CMP, 

TPE-TB-TPA CMP, and TPA-TB-TPA CMP. 
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Figure S36. HER data of Py-TB-TPA CMP in the presence and absence of Pt. 
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Figure S37. Stability and reusability test using Py-TB-TPA CMP as a photocatalyst under visible-

light irradiation.
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Figure S38. Simulated UV-visible absorption spectra of the studied molecules.
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Table S1. Summarized TGA, BET and HER data of TPA-CMPs.

Sample Td5 
(oC)

Td10 
(oC)

Char 
Yield 

(wt.%)

Surface 
Area 

(m2/g)

Pore 
Volume 
(cm3/g)

Pore 
Size 
(nm)

HER 
(µmol 
g-1 h-1)

TPA-TPA CMP 518 557 72 98 0.22 0.4 44

TPE-TPA CMP 296 357 63 423 0.69 1 119

Py-TPA CMP 387 508 78 913 0.62 1 109

TPA-TB-TPA CMP 370 482 76 459 0.25 1.9 1107

TPE-TB-TPA CMP 376 432 62 487 0.57 1 3633

Py-TB-TPA CMP 306 382 70 454 0.28 1 16700

Table S2. Summarized the ICP-OES results for TPA-TPA CMP, TPE-TPA CMP, Py-TPA CMP, 
TPA-TB-TPA CMP, TPE-TB-TPA and Py-TB-TPA CMP.

Sample Pd (ppm)

TPA-TPA CMP 8.3

TPE-TPA CMP 5.6

Py-TPA CMP 6.4

TPA-TB-TPA CMP 9

TPE-TB-TPA CMP 4.5

Py-TB-TPA CMP 5.4
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Table S3. Summarized the AQY values of Py-TB-TPA CMP at different wavelengths.

λ = 420 nm λ = 460 nm λ = 500 nm λ = 550 nm λ = 600 nm

NA (/mol) 6.022×10^23 6.022×10^23 6.022×10^23 6.022×10^23 6.022×10^23

M (mol) 2.302e-5 1.885e-5 1.987e-5 2.1604e-5 1.157e-5

h (J⋅s) 6.626×10^-34 6.626×10^-34 6.626×10^-34 6.626×10^-34 6.626×10^-34

c (m/s) 3×10^8 3×10^8 3×10^8 3×10^8 3×10^8

S (m^2) 0.00075 0.00075 0.00075 0.00075 0.00075

P (W/m^2) 22.5 23 25 27 30

t (s) 3600 3600 3600 3600 3600

 (m) 0.00000042 0.00000046 0.0000005 0.00000055 0.0000006

AQY 21.6 15.8 14.1 12.9 5.7
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Table S4. Comparative studies of synthesized our synthetic TPA-CMPs and TPA-TB-CMPs with 
the reported CMPs toward photocatalytic hydrogen evolution.
Photocatalyst Photocatalytic 

conditions
Activity (µmol g-

1 h-1)
Reference

Flu-SO
Py-SO
FluPh2-SO

H2O/MeOH/TEA, Pt
6060
4940
6840

Small 2018, 14, 1801839

Ta‐CMP
Ta‐CMP‐N
Ta‐CMP‐CN

Water/TEOA
48.7
99
698

Macromol. Chem. Phys. 2019, 
220, 1900304

PyTA-BC
PyTA-BC-Ph

H2O/MeOH, AA, Pt 5030
2760

Adv. Opt. Mater. 2020, 8, 
2000641

TP-BDDA TEOA/H2O, Pt 324 J. Am. Chem. Soc. 2018, 140, 
1423-1427

Sp2c-COF
Sp2c-COFERDN

TEOA/H2O, Pt 1360
2120

Chem 2019, 5, 1632-1647

NUS-55
NUS-55(Co)

H2O/Ethanol, TEA 430
2480

Sci. China Chem. 2020, 63, 
192-197

TpPa-2 H2O/ Sodium ascorbate, 
Ni

1890 Chem. Eng. J. 2020, 379, 
122342

PCP4e Water/MeOH/TEA, Pt 1900 J. Am. Chem. Soc. 2016, 138, 
7681-7686

FS-COF Water/ AA, Pt 16300 Nat. Chem. 2018, 10, 1180-
1189

PCP11 Water/MeOH/TEA, Pt 2590 Macromolecules 2016, 49, 
6903-6909

DBTD-CMP1 Water/TEOA, Pt 4600 ACS Catal. 2018, 8, 8590-
8596

PyBT-2 Water/TEOA, Pt 1060 Appl. Catal. B: Environ. 2018, 
228, 1-9

P28 Water/MeOH/TEA 960 Chem. Mater. 2018, 30, 5733-
5742

P10 Water/MeOH/TEA 3260 Nat. Commun. 2018, 9, 1-11

S-CMP3 Water/MeOH/TEA, Pt 3110 Chem. Mater. 2019, 31, 305-
313

N-PDBT-O Water/ TEOA 12200 Rapid Commun. 2019, 40, 
1800494

P64 Water/MeOH/TEA 3530 J. Am. Chem. Soc. 2019, 141, 
9063-9071
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MoS2/PyP(IM) Water/MeOH 520 Appl. Catal. B: Environ. 2019, 
251, 102-111

PSO-FS Water/TEOA 3400 Angew. Chem. Int. Ed. 2019, 
58, 10236-10240

N-CMP (4-CzPN) Water/TEOA, Pt 2100 Appl. Catal. B: Environ. 2019, 
245, 114-121

B-SOBT-1,3,5-E Water/TEOA 1400 J. Mater. Chem. A 2021, 
9,10208-10216

BBT-FC8O5 Water/TEOA 10360 Appl. Surf. Sci. 2020, 499, 
143865

Flu-DFBZ Water/TEOA 14850 Appl. Catal. B: Environ. 2020, 
267, 118577

H-CN Water/TEOA, Pt 4300 J. Colloid Interface Sci. 2021, 
581, 159-166

TPET-TTh CMP 
PyT-TTh CMP 

Water/MeOH/AA, Pt
Water/MeOH/AA, Pt

4600
18533 Giant, 2024, 17, 100217

TPA-TPA CMP
TPE-TPA CMP
Py-TPA CMP
TPA-TB-TPA CMP
TPE-TB-TPA CMP
Py-TB-TPA CMP

Water/MeOH/AA
Water/MeOH/AA
Water/MeOH/AA
Water/MeOH/AA
Water/MeOH/AA
Water/MeOH/AA

44
119
109
1107
3633
16700

This work
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Table S5. The calculated MOs energies, energy gap, and global reactivity descriptors of 
the studied TPA-CMP materials 

Quantum descriptors 

Py
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M
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T
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-T
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C

M
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EHOMO (eV) -5.00 -4.76 -4.95 -4.91 -4.85 -5.04 

ELUMO (eV) -1.70 -1.06 -1.48 -2.07 -1.52 -1.51 

ΔE (eV)  3.30 3.70 3.47 2.84 3.32 3.53 

Electron affinity A (eV) 1.70 1.06 1.48 2.07 1.52 1.51 

Ionization potential I (eV) 5.00 4.76 4.95 4.91 4.85 5.04 

Chemical hardness η (eV) 1.65 1.85 1.73 1.42 1.66 1.77 

Softness S (eV-1) 0.30 0.27 0.29 0.35 0.30 0.28 

Electronegativity χ (eV) 3.35 2.91 3.22 3.49 3.18 3.27 
Electrophilicity index ω 
(eV) 

3.40 2.29 2.98 4.29 3.05 3.04 


