Supporting Information for

Reticular Design and Alkyne Bridge Engineering in Donor-π-Acceptor Type Conjugated Microporous Polymers for Boosting Photocatalytic Hydrogen Evolution

Mohamed Gamal Mohamed^{a,b*}, Mohamed Hammad Elsayed^{c,d*}, Chia-Jung Li^a,

Ahmed E. Hassan^d, Islam M. A. Mekhemer^{b,c}, Ahmed Fouad Musa^c, Mahmoud

Kamal Hussien^{e,b}, Li-Chyong Chen^{e,f,g}, Kuei-Hsien Chen^{e,h}, Ho-Hsiu Chou^c,

Shiao-Wei Kuo^{a,i*}

^aDepartment of Materials and Optoelectronic Science, Center for Functional Polymers and Supramolecular Materials, National Sun Yat-Sen University, Kaohsiung 804, Taiwan. ^bDepartment of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt. ^cDepartment of Chemistry, Faculty of Science, Al-Azhar University, Hsinchu 30013, Taiwan. ^dDepartment of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt. ^eCenter for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan. ^fCenter of Atomic Initiative for New Materials, National Taiwan University, Taipei 10617, Taiwan. ^gDepartment of Physics, National Taiwan University, Taipei 10617, Taiwan. ^hInstitute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan. ⁱDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.

Correspondingauthors:mgaml.eldin12@yahoo.com(M.G.Mohamed),Mohamed.hammad@azhar.edu.eg(M. H. Elsayed) and kuosw@faculty.nsysu.edu.tw(S. W. Kuo).

Characterization

FTIR spectra were collected on a Bruker Tensor 27 FTIR spectrophotometer with a resolution of 4 cm⁻¹ by using the KBr disk method. ¹³C nuclear magnetic resonance (NMR) spectra were examined by using an INOVA 500 instrument with DMSO as the solvent and TMS as the external standard. Chemical shifts are reported in parts per million (ppm). The curing behavior and thermal stabilities of the samples were performed by using a TG Q-50 thermogravimetric analyzer under a N₂ atmosphere; the cured sample (ca. 5 mg) was put in a Pt cell with a heating rate of 20 °C min⁻¹ from 100 to 800 °C under a N₂ flow rate of 60 mL min⁻¹. Wide-angle X-ray diffraction (WAXD) patterns were measured by the wiggler beamline BL17A1 of the National Synchrotron Radiation Research Center (NSRRC), Taiwan. A triangular bent Si (111) single crystal was used to get a monochromated beam having a wavelength (λ) of 1.33 Å. The morphologies of the polymer samples were examined by Field emission scanning electron microscopy (FE-SEM; JEOL JSM7610F) and transmission electron microscope (TEM) using a JEOL-2100 instrument at an accelerating voltage of 200 kV. Surface area and porosity measurements of samples weighing approximately 40-60 mg were conducted using the BEL MasterTM/BEL simTM (version 3.0.0) apparatus. Nitrogen (N₂) adsorption and desorption isotherms were generated by gradually exposing the samples to ultrahigh-purity N₂ gas, reaching pressures of up to about 1 atmosphere, while maintaining a temperature of 77 K in a liquid nitrogen bath. Prior to these measurements, the samples underwent a degassing process at 150 °C for a duration of 8 hours. The instrument's software was utilized to calculate surface parameters using the BET adsorption models. Furthermore, the pore size of the prepared samples was determined using nonlocal density functional theory (NLDFT).

Synthesis of 1,3,6,8-tetrabromopyrene (Py-Br₄)

Pyrene (1.00 g,5 mmol) was dissolved in nitrobenzene (10 mL) and a solution of bromine (1.15 mL, 22 mmol) with nitrobenzene (10 mL) was added dropwise into it, the mixture was heated up to 120°C for 4 h and then cooled to room temperature, the reaction mixture was filtered, washed with ETOH and dried under vacuum at 50°C to afford a green solid (2.20 g, 91%). FT-IR (KBr): 3053 (aromatic C–H stretching), 682 (C–Br stretching).

Synthesis of 1,3,6,8-tetrakis(2-(trimethylsilyl)ethynyl)pyrene (Py-TMS)

Under nitrogen, Pd(PPh₃)₄ (220 mg, 0.12 mmol), PPh₃ (244 mg, 0.92 mmol), and CuI (118 mg, 0.62 mmol) were added to 1,3,6,8-tetrabromopyrene (2 g, 2.38 mmol) in a mixed solvent of dry toluene (28 mL) and triethylamine (28 mL). After being heated up to 50°C, TMSA (2.34 g, 23.8 mmol) was injected dropwise into the flask, and the mixture was stirred under 90°C for 48 h, the reaction mixture was cooled to room temperature and filtered through Celite. Then, the solvent was removed under reduced pressure to give an orange solid. FT-IR (KBr, cm⁻¹): 3053 (aromatic C–H stretching), 2908 (aliphatic C–H stretching), 2100 (C≡C stretching), 1618 (C=C stretching). ¹H NMR (500 MHz, δ , ppm, CDCl₃): 0.413 (s, 36H, CH₃), 8.3 (s, 2H), 8.57 (s, 4H). ¹³C NMR (125 MHz, δ , ppm, CDCl₃): 135.70, 132.40, 127.80, 119.20, 103.50, 101.60.

Synthesis of 1,3,6,8-tetraethynylpyrene (Py-T)

1,3,6,8-tetrakis(2-(trimethylsilyl)ethynyl)pyrene (2.00 g, 3.41 mmol) and K₂CO₃ (5.70 g, 42 mmol) were added in one neck flask with anhydrous methanol (50 mL)and the reaction mixture was stirred at room temperature for 48 h. The methanol solution was removed under reduced pressure to afford 1,3,6,8-tetraethynylpyrene as an orange powder (1.88 g, 94.30%, Scheme S1). FT-IR (KBr, cm⁻¹, **Figure S1**): 3279 (\equiv C-H), 3065 (aromatic C–H stretching), 2186 (C \equiv C stretching), 1618 (C=C

stretching).¹H NMR (500 MHz, δ, ppm, CDCl₃, **Figure S2**): 8.68 (s, 4H), 8.38 (s, 2H), 3.67 (s, 4H). ¹³C NMR (125 MHz, δ, ppm, CDCl₃, **Figure S3**): 133.80, 130.80, 129.10, 127.80, 84.50, 59.70.

Synthesis of Tetraphenylethylene (TPE) and 1,1,2,2-Tetrakis(4-bromophenyl)ethene (TPE-Br₄) under N₂, benzophenone (3.00 g, 16.4 mmol) and Zn (4.31g, 65.9 mmol) in THF (80 mL) were stirred in an ice/salt-water bath for 10 min. TiCl₄ (3.60 mL, 33.0 mmol) was injected over 30 min, and then the mixture was kept at 80 °C under reflux. Then, 5% aqueous K₂CO₃ was added to the reaction. After evaporation of the organic solvent, EtOAc extracted the aqueous phase three times. After evaporation of EtOAc, the residue was washed with EtOH to obtain a white crystalline solid (2.66 g, 97%). M.p.: 228–229 °C (DSC). FTIR (KBr, cm⁻¹): 3047 (aromatic C–H stretching), 1602 (C=C stretching). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 7.26 (d, 8H), 6.84 (d, 8H). ¹³C NMR (125 MHz, CDCl₃, δ, ppm): 140.70, 141.00, 131.30, 127.70, 126.4. A solution of TPE (3.32 g, 10.0 mmol) in glacial acetic acid (10 mL) and CH₂Cl₂ (20 mL) in a round-bottom flask at 0 °C (ice bath). Br₂ (4.00 mL, 80.0 mmol) was added to the mixture, and the mixture was kept at room temperature for 48 h. Then, the H₂O (200 mL) was added to the resulting solution, and the mixture was extracted with CH₂Cl₂. After evaporation of CH₂Cl₂, the residue was washed with MeOH to give a white solid, which was recrystallized (CH₂Cl₂/MeOH) to give TPE-Br₄ a white crystalline solid (6.15 g, 95%). M.p.: 261-262 °C (DSC). FTIR (KBr, cm⁻¹): 3051 (aromatic C–H stretching), 1572 (C=C stretching). ¹H NMR (500 MHz, CDCl₃, δ, ppm): 7.25 (d, 8H), 6.84 (d, 8H). ¹³C NMR (125 MHz, CDCl₃, δ, ppm): 142.30, 139.70, 133.70, 131.90, 121.80.

1,1,2,2-Tetrakis(4-((trimethylsilyl)ethynyl)phenyl)ethane (TPE-TMS)

A mixture of TPE-Br₄ (1.00 g, 1.54 mmol), CuI (0.0470 g, 0.240 mmol), PPh₃ (0.100 g, 0.380 mmol), and Pd(PPh₃)₄ (0.0860 g, 0.120 mmol) in THF (14 mL) and Et₃N (14 mL) was stirred in a two-neck flask at 50 °C for 30 min. Ethynyltrimethylsilane (1.21 g, 12.3 mmol) was added dropwise and then the mixture was heated under reflux at 50 °C for 3 days. The resulting mixture was filtered and concentrated. The residue was purified through flash chromatography (SiO₂; DCM) to give a white powder (0.75 g, 75%). FTIR (KBr, cm⁻¹): 3060 (aromatic C–H stretching), 2920 (aliphatic C–H stretching), 2155 (C=C stretching), 1618 (C=C stretching). ¹H NMR (500 MHz, CDCl₃, δ , ppm): 7.24 (d, *J* = 8.4 Hz, 8H), 6.88 (d, *J* = 8.4 Hz, 8H), 0.22 (s, 36H, CH₃). ¹³C NMR (125 MHz, CDCl₃, δ , ppm): 144, 141, 132.7, 132, 122.3, 105.6, 95.8, 0.07.

1,1,2,2-Tetrakis(4-ethynylphenyl)ethene (TPE-T)

A mixture of TPE-TMS (0.440 g, 0.650 mmol) and K₂CO₃ (0.900 g, 6.52 mmol) in methanol (10 mL) was stirred at room temperature overnight. The pale-yellow precipitate [**Scheme S2**] was filtered off and dried [0.37 g, 93%: $T_{\rm m}$: 155.5 °C (DSC)]. FTIR (KBr, cm⁻¹, **Figure S4**): 3273 (=C–H), 3042 (aromatic C–H stretching), 2109 (C=C stretching), 1617 (C=C stretching). ¹H NMR (500 MHz, CDCl₃, δ , ppm, **Figure S5**): 7.24 (d, *J* = 8.4 Hz, 8H), 6.93 (d, *J* = 8.4 Hz, 8H), 3.06 (s, 4H, =C–H). ¹³C NMR (125 MHz, CDCl₃, δ , ppm, **Figure S6**): 143.8, 141.6, 132.36, 132, 121.24, 83.6 (=C–Ar), 77.88 (=C–H).

Photocatalytic H₂ evolution tests

Electrochemical impedance spectroscopy (EIS)

Electrochemical impedance spectroscopy (EIS) was performed on a Zahner Zennium E workstation equipped with three-electrode cells including a Pt wire counter electrode, Ag/AgCl as reference electrode (3M NaCl), and a fluorine-doped tin oxide (FTO) glass as a working electrode. About 5 mg of CMPs were dispersed into an acetonitrile solution (1 mL) with 30 μ L Nafion and sonicate for 1 h. After that, 200 μ L of as-prepared suspension was spin-coated on FTO glass with an active area of 6.875 cm². Here, 0.5 M Na₂SO₄ aqueous solution was prepared as an electrolyte.

Photocatalytic H₂ evolution test

The photocatalytic experiments were carried out in a 35 mL Pyrex reactor. The reactor was closed using a rubber septum. In a typical photocatalytic reaction, TPA-TPA CMP or TPE-TPA CMP or Py-TPA CMP or TPA-TB-TPA CMP or TPE-TB-TPA CMP or Py-TB-TPA CMP (1 mg) was dispersed in 10 mL of the mixture of water/methanol (2/1) with 0.1M AA as the sacrificial electron donor. The suspension was purged with argon for 5 min to remove dissolved air. A 350 W Xenon lamp equipped with a cut-off filter (1000 W/m², λ : 380-780 nm) was used as the light source. The light intensity of the Xe lamp was similar to that of the visible light region in standard 1 sun, as verified using a solar cell. Hydrogen samples were taken with a gas-tight syringe and injected in a Shimazhu GC-2014 gas chromatograph with Ar as the carrier gas. Hydrogen was detected with a thermal conductivity detector, referring to the standard hydrogen gases with known concentrations.

Quantum efficiency measurements

In the AQY experiments, the catalyst solution was prepared by dispersing Py-TB-TPA CMP (1 mg) in 10 mL of the mixture of water/methanol (2/1) with 0.1M AA as sacrificial electron donor and cocatalyst (2 wt% Pt). The suspension was illuminated with a 300 W Xe lamp with different bandpass filters (420, 460, 500, and 600 nm). The formation of hydrogen was quantified using a Shimadzu gas chromatograph (GC2014) operating at isothermal conditions using a semi-capillary column equipped with a thermal conductivity detector.

The AQY was calculated as follows:

 $AQY = [(Number of evolved hydrogen molecules \times 2) / Number of incident photons] \times 100\%.$ The AQY was calculated as follows:

 $AQY = [(Number of evolved hydrogen molecules \times 2) / Number of incident photons] \times 100\%$

$$AQY = \frac{N_e}{N_p} \times 100\% = \frac{2 \times M \times N_A}{\frac{E_{total}}{E_{photon}}} \times 100\%$$
$$= \frac{2M \times N_A}{\frac{S \times P \times t}{h \times \frac{C}{2}}} \times 100\% = \frac{2 \times M \times N_A \times h \times c}{S \times P \times t \times \lambda} \times 100\%$$

Where M is the amount of H₂ molecules (mol), N_A is Avogadro constant (6.022 × 10²³/mol), h is the Planck constant (6.626 × 10⁻³⁴ J·s), c is the speed of light (3 × 108 m/s), S is the irradiation area (cm²), P is the intensity of irradiation light (W/cm²), t is the photoreaction time (s), λ is the wavelength of the monochromatic light (m).

The experimental details for DFT calculations

Density functional theory (DFT) is a computational method used to calculate the electronic structure of atoms, molecules, and materials. DFT calculations can be used to predict various properties of these systems, such as their geometry, electronic properties, and vibrational frequencies. The ground state geometry optimization of the CMPs molecules is implemented using Density Functional Theory (DFT) whilst applying the methods of B3LYP at 6-31G (d) basis set method at Gaussian 16 revision A.03 program package. The obtained result was then visualized using the Gauss View 5 software.

Scheme S1. Synthesis of Py-T.

Scheme S2. Synthesis of TPE-T.

Scheme S3. Synthesis of TPA-3Br.

Scheme S4. Synthesis of TPA-3B(OCH₃)₂.

Scheme S5. Synthesis of TPA-TMS.

Scheme S6. Synthesis of TPA-T.

Scheme S7. Synthesis of TPA-TPA CMP.

Scheme S8. Synthesis of TPE-TPA CMP.

Scheme S9. Synthesis of Py-TPA CMP.

Scheme S10. Synthesis of TPA-TB-TPA CMP.

Scheme S11. Synthesis of TPE-TB-TPA CMP.

Scheme S12. Synthesis of Py-TB-TPA CMP.

Figure S1. FT-IR spectrum of Py-T.

Figure S2.¹H NMR spectrum of Py-T.

Figure S3.¹³C NMR spectrum of Py-T.

Figure S4. FT-IR spectrum of TPE-T.

Figure S5. ¹H NMR spectrum of TPE-T.

Figure S6. ¹³C NMR spectrum of TPE-T.

Figure S7. FT-IR spectrum of TPA-3Br.

Figure S8. ¹H NMR spectrum of TPA-3Br. * is the peak for CDCl₃.

Figure S9. ¹³C NMR spectrum of TPA-3Br.

Figure S10. FT-IR spectrum of TPA-3B(OCH₃)₂.

Figure S11. ¹H NMR spectrum of TPA-3B(OCH₃)₂. * is the peak for CDCl₃.

Figure S12. ¹³C NMR spectrum of TPA-3B(OCH₃)₂. * is the peak for CDCl₃.

Figure S13. FT-IR spectrum of TPA-TMS.

Figure S14. ¹H NMR spectrum of TPA-TMS. * is the peak for CDCl₃.

Figure S15. ¹³C NMR spectrum of TPA-TMS. * is the peak for CDCl₃.

Figure S16. FT-IR spectrum of TPA-T.

Figure S17. ¹H NMR spectrum of TPA-T. * is the peak for CDCl₃.

Figure S18. ¹³C NMR spectrum of TPA-T. * is the peak for CDCl₃.

Figure S19. Solubility test of (a) TPA-TPA CMP, TPE-TPA CMP, and Py-TPA CMP and (b) TPA-TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP in THF, DMF, DCM and MeOH; respectively.

Figure S20. FTIR profiles of TPA-3B(OCH_3)₂, TPA-3Br and TPA-TPA CMP, were recorded at room temperature.

Figure S21. FTIR profiles of TPA-3B(OCH₃)₂, TPE-4Br, and TPE-TPA CMP, were recorded at room temperature.

Figure S22. FTIR profiles of TPA-3B(OCH₃)₂, Py-4Br and Py-TPA CMP, were recorded at room temperature.

Figure S23. TGA profiles of (a) TPA-3B(OCH₃)₂, TPA-3Br and TPA-TPA CMP, (b) (a) TPA-3B(OCH₃)₂, TPE-4Br and TPE-TPA CMP and (c) TPA-3B(OCH₃)₂, Py-4Br and Py-TPA CMP.

Figure S24. FTIR profiles of TPA-T, TPA-3Br, and TPA-TB-TPA CMP, were recorded at room temperature.

Figure S25. FTIR profiles of TPE-T, TPA-3Br and TPE-TB-TPA CMP, were recorded at room temperature.

Figure S26. FTIR profiles of Py-T, TPA-3Br and Py-TB-TPA CMP, were recorded at room temperature.

Figure S27. TGA profiles of (a) TPA-T, TPA-3Br, and TPA-TB-TPA CMP, (b) (a) TPE-T, TPA-3Br, and TPE-TB-TPA CMP, and (c) Py-T, TPA-3Br and Py-TB-TPA CMP.

Figure S28. XPS spectra of (a) TPA-3B(OCH₃)₂, TPA-3Br, TPE-4Br and Py-4Br and (b) TPA-T, TPE-T, and Py-T.

TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP.

Figure S30. XRD profiles of TPA-3B(OCH₃)₂, TPA-T, TPA-3Br, TPE-4Br and Py-4Br, recorded at room temperature.

Figure S31. XRD spectra of (a) TPA-TPA CMP, TPE-TPA CMP, and Py-TPA CMP and (b) TPA-TB-TPA CMP, TPE-TB-TPA CMP, and Py-TB-TPA CMP.

Figure S32. SEM images of Py-TPA CMP.

Figure S33. SEM-EDS mapping of (a) TPA-TPA CMP, (b) TPE-TPA CMP, and (c) Py-TPA CMP.

Figure S34. SEM-EDS mapping of (a) TPA-TB-TPA CMP, (b) TPE-TB-TPA CMP, and (c) Py-TB-TPA CMP.

Figure S35. PL spectra of Py-TPA CMP, TPE-TPA CMP, TPA-TPA CMP, Py-TB-TPA CMP, TPE-TB-TPA CMP, and TPA-TB-TPA CMP.

Figure S36. HER data of Py-TB-TPA CMP in the presence and absence of Pt.

Figure S37. Stability and reusability test using Py-TB-TPA CMP as a photocatalyst under visible-light irradiation.

Figure S38. Simulated UV-visible absorption spectra of the studied molecules.

Sample	<i>T_{d5}</i> (°C)	<i>T_{d10}</i> (°C)	Char Yield (wt.%)	Surface Area (m ² /g)	Pore Volume (cm ³ /g)	Pore Size (nm)	HER (μmol g ⁻¹ h ⁻¹)
ТРА-ТРА СМР	518	557	72	98	0.22	0.4	44
ТРЕ-ТРА СМР	296	357	63	423	0.69	1	119
Py-TPA CMP	387	508	78	913	0.62	1	109
ТРА-ТВ-ТРА СМР	370	482	76	459	0.25	1.9	1107
ТРЕ-ТВ-ТРА СМР	376	432	62	487	0.57	1	3633
Ру-ТВ-ТРА СМР	306	382	70	454	0.28	1	16700

 Table S1. Summarized TGA, BET and HER data of TPA-CMPs.

Table S2. Summarized the ICP-OES results for TPA-TPA CMP, TPE-TPA CMP, Py-TPA CMP, TPA-TB-TPA CMP, TPE-TB-TPA and Py-TB-TPA CMP.

Sample	Pd (ppm)
ТРА-ТРА СМР	8.3
ТРЕ-ТРА СМР	5.6
Ру-ТРА СМР	6.4
ТРА-ТВ-ТРА СМР	9
ТРЕ-ТВ-ТРА СМР	4.5
Ру-ТВ-ТРА СМР	5.4

	$\lambda = 420 \text{ nm}$	$\lambda = 460 \text{ nm}$	$\lambda = 500 \text{ nm}$	$\lambda = 550 \text{ nm}$	$\lambda = 600 \text{ nm}$
N _A (/mol)	6.022×10^23	6.022×10^23	6.022×10^23	6.022×10^23	6.022×10^23
M (mol)	2.302e-5	1.885e-5	1.987e-5	2.1604e-5	1.157e-5
h (J·s)	6.626×10^-34	6.626×10^-34	6.626×10^-34	6.626×10^-34	6.626×10^-34
c (m/s)	3×10^8	3×10^8	3×10^8	3×10^8	3×10^8
S (m^2)	0.00075	0.00075	0.00075	0.00075	0.00075
P (W/m^2)	22.5	23	25	27	30
t (s)	3600	3600	3600	3600	3600
L (m)	0.00000042	0.00000046	0.0000005	0.00000055	0.0000006
AQY	21.6	15.8	14.1	12.9	5.7

Table S3. Summarized the AQY values of Py-TB-TPA CMP at different wavelengths.

Photocatalyst	Photocatalytic	Activity (µmol g	Reference
E1 00	conditions	¹ h ⁻¹)	a 110010 14 1001000
Flu-SO Py SO	HO/MOH/TEA Pt	6060 4940	Small 2018, 14, 1801839
FluPha-SO	$\Pi_2 O/MeO\Pi/TEA, Pt$	6840	
		0010	
Ta-CMP		48.7	Macromol. Chem. Phys. 2019,
Ta-CMP-N	Water/TEOA	99	220, 1900304
Ta-CMP-CN		698	
PyTA-BC	H ₂ O/MeOH, AA, Pt	5030	Adv. Opt. Mater. 2020, 8,
PyTA-BC-Ph		2760	2000641
	TEOA/H.O. Pt	324	I Am Chem Soc 2018 140
II-DDDA	$110A/11_20, 11$	324	1423-1427
			1123 1127
Sp ² c-COF	TEOA/H ₂ O, Pt	1360	Chem 2019, 5, 1632-1647
Sp ² c-COF _{ERDN}		2120	
NUS-55	H ₂ O/Ethanol, TEA	430	Sci. China Chem. 2020, 63.
NUS-55(Co)		2480	192-197
		1000	
TpPa-2	$H_2O/Sodium$ ascorbate,	1890	Chem. Eng. J. 2020, 379,
	1N1		122342
PCP4e	Water/MeOH/TEA, Pt	1900	J. Am. Chem. Soc. 2016, 138,
			7681-7686
FS-COF	Water/AA Pt	16300	Nat Chem 2018 10 1180-
15 001	((utol) 1111, 1 t	10000	1189
PCP11	Water/MeOH/TEA, Pt	2590	Macromolecules 2016, 49,
			6903-6909
DBTD-CMP1	Water/TEOA, Pt	4600	ACS Catal. 2018, 8, 8590-
			8596
	Water/TEOA Dt	1060	Appl Catal B: Environ 2018
ryb1-2	water/TEOA, Ft	1000	228, 1-9
			220, 1 2
P28	Water/MeOH/TEA	960	Chem. Mater. 2018, 30, 5733-
			5742
P10	Water/MeOH/TEA	3260	Nat. Commun. 2018, 9, 1-11
		2110	
S-CMP3	Water/MeOH/TEA, Pt	3110	Chem. Mater. 2019, 31, 305-
			313
N-PDBT-O	Water/ TEOA	12200	Rapid Commun. 2019, 40,
			1800494
P64	Water/MeOH/TFA	3530	I Am Chem Soc 2019 141
		5550	9063-9071

Table S4. Comparative studies of synthesized our synthetic TPA-CMPs and TPA-TB-CMPs with the reported CMPs toward photocatalytic hydrogen evolution.

MoS ₂ /PyP(IM)	Water/MeOH	520	Appl. Catal. B: Environ. 2019, 251, 102-111
PSO-FS	Water/TEOA	3400	Angew. Chem. Int. Ed. 2019, 58, 10236-10240
N-CMP (4-CzPN)	Water/TEOA, Pt	2100	Appl. Catal. B: Environ. 2019, 245, 114-121
B-SOBT-1,3,5-E	Water/TEOA	1400	J. Mater. Chem. A 2021, 9,10208-10216
BBT-FC8O5	Water/TEOA	10360	Appl. Surf. Sci. 2020, 499, 143865
Flu-DFBZ	Water/TEOA	14850	Appl. Catal. B: Environ. 2020, 267, 118577
H-CN	Water/TEOA, Pt	4300	J. Colloid Interface Sci. 2021, 581, 159-166
TPET-TTh CMP	Water/MeOH/AA, Pt	4600	
PyT-TTh CMP	Water/MeOH/AA, Pt	18533	Giant, 2024, 17, 100217
TPA-TPA CMP	Water/MeOH/AA	44	
TPE-TPA CMP	Water/MeOH/AA	119	
Py-TPA CMP	Water/MeOH/AA	109	This work
TPA-TB-TPA CMP	Water/MeOH/AA	1107	
TPE-TB-TPA CMP	Water/MeOH/AA	3633	
Py-TB-TPA CMP	Water/MeOH/AA	16700	

Quantum descriptors	Py-TPA CMP	TPA-TPA CMP	TPE-TPA CMP	TPA-TB-TPA CMP	TPA-TB-TPA CMP	TPE-TB-TPA CMP
Еномо (eV)	-5.00	-4.76	-4.95	-4.91	-4.85	-5.04
Elumo (eV)	-1.70	-1.06	-1.48	-2.07	-1.52	-1.51
ΔE (eV)	3.30	3.70	3.47	2.84	3.32	3.53
Electron affinity A (eV)	1.70	1.06	1.48	2.07	1.52	1.51
Ionization potential I (eV)	5.00	4.76	4.95	4.91	4.85	5.04
Chemical hardness η (eV)	1.65	1.85	1.73	1.42	1.66	1.77
Softness S (eV ⁻¹)	0.30	0.27	0.29	0.35	0.30	0.28
Electronegativity χ (eV)	3.35	2.91	3.22	3.49	3.18	3.27
Electrophilicity index ω (eV)	3.40	2.29	2.98	4.29	3.05	3.04

Table S5. The calculated MOs energies, energy gap, and global reactivity descriptors of the studied TPA-CMP materials