Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information of

Unlocking the potential of alkaline-earth metal active centers for nitrogen activation and ammonia synthesis: the role of s-d orbital synergy

Donghai Wu^{1,2}, Jiarui Wu¹, Haobo Li¹, Wenjing Lv¹, Yanhao Song¹, Dongwei Ma^{1*}, and Yu Jia^{1*}

¹Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials Science and Engineering, Henan University, Kaifeng 475004, China

²Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China

^{*}Corresponding author. E-mail: dwmachina@126.com (D. Ma).

^{*}Corresponding author. E-mail: jiayu@henu.edu.cn (Y. Jia).

Fig. S1. Top and side views of the optimized configurations of AE₂@TMD DACs.

Fig. S2. Total DOS (TDOS) of the studied AE₂@TMD DACs supported by MoS₂ (a), MoSe₂ (b), WS₂ (c), and WSe₂ (d).

Fig. S3. The most favorable configurations of N_2 adsorption on the AE₂@TMD DACs.

Fig. S4. Calculated COHP of $*N_2$ on $Ca_2@WS_2$ DAC. The vertical dashed line denotes the Fermi level, and the blue and yellow fills denote the bonding and antibonding interactions, respectively.

Fig. S5. Free energy diagram for NRR on CaBa@MoSe₂ DAC, with consideration of the solvation effect.

Fig. S6. PDOS of 3*d* orbitals of Ca/Ba and their bonded $*N_2H$, and the COHP between them for Ca₂@MoSe₂ (a), CaBa@MoSe₂ (b), and Ba₂@MoSe₂ (c). Insets are the corresponding CDD plots, where the yellow and cyan regions denote electron accumulation and depletion, respectively, with an isosurface of 0.001 *e*/bohr³. The vertical dashed line in denotes the Fermi level. For the COHP, the blue and yellow fills denote the bonding and antibonding interactions, respectively.

Fig. S7. Calculated COHP of $*N_2$ on Ca₂@MoSe₂ (a), CaBa@MoSe₂ (b), and Ba₂@MoSe₂ (c) DACs. The vertical dashed line denotes the Fermi level, and the blue and yellow fills denote the bonding and antibonding interactions, respectively.

Fig. S8. The most favorable configurations of N_2 and H adsorption on the CaBa@MoSe₂ DAC together with the corresponding adsorption free energy.

Fig. S9. The most stable configurations of H_2O adsorption on the $AE_2@TMD$ DACs.

Species	E_{ZPE}	TS
*N2	0.18	0.15
*NNH	0.47	0.15
*NHNH	0.78	0.19
*NHNH ₂	1.12	0.18
*NH ₂ NH ₂	1.24	0.25
*NH ₂ NH ₃	1.66	0.29
*NNH ₂	0.81	0.15
*NNH ₃	1.13	0.22
*N	0.08	0.03
*NH	0.31	0.10
*NH ₂	0.66	0.10
*NH ₃	1.00	0.22
N_2	0.15	0.58
H_2	0.27	0.41
NH ₃	0.89	0.60

Table S1. Calculated zero-point energy (E_{ZPE} , in eV) and the product of temperature (T = 298.15 K) and entropy (*S*) (*TS*, in eV) of various species involved in the reaction pathways for NRR, where * represents the adsorption site.

Table S2. Calculated dissolution potential (U_{diss} , in V) as well as N₂ and H₂O adsorption free energy ($\Delta G(*N_2)$, $\Delta G(*H_2O)$, in eV), N-N bond length of $*N_2$ ($d_{\text{N-N}}$, in Å), the number of the electron transferred from AE dimers to TMD support for pristine DACs (Q_{AE} , in e), and from the DACs to $*N_2$ on the studied AE₂@TMD DACs (Q_{*N2} , in e), where the positive and negative values represent losing and gaining electrons, respectively.

Systems	$U_{ m diss}$	$\Delta G(*N_2)$	$\Delta G(*H_2O)$	$d_{\text{N-N}}$	$Q_{ m AE}$	$Q_{ m *N2}$
$Mg_2@MoS_2$	-1.65	-0.13	-0.87	1.17	2.51	-0.65
$Ca_2@MoS_2$	-1.45	-0.32	-0.99	1.16	2.70	-0.59
$Sr_2@MoS_2$	-1.36	-0.24	-0.88	1.16	2.71	-0.57
$Ba_2@MoS_2$	-1.22	0.04	-0.66	1.15	2.56	-0.51
$CaMg@MoS_2$	-1.55	-0.30	-1.18	1.16	2.56	-0.57
$CaSr@MoS_2$	-1.40	-0.30	-0.95	1.16	2.71	-0.56
CaBa@MoS ₂	-1.33	-0.23	-0.90	1.16	2.64	-0.52
Mg2@MoSe2	-1.62	-0.05	-0.94	1.17	2.55	-0.65
$Ca_2@MoSe_2$	-1.53	-0.23	-0.91	1.16	2.61	-0.59
Sr ₂ @MoSe ₂	-1.47	-0.16	-0.81	1.16	2.61	-0.59
$Ba_2@MoSe_2$	-1.36	0.06	-0.61	1.16	2.44	-0.52
CaMg@MoSe ₂	-1.57	-0.22	-1.11	1.16	2.58	-0.57
CaSr@MoSe ₂	-1.50	-0.21	-1.00	1.16	2.62	-0.58
CaBa@MoSe ₂	-1.44	-0.17	-0.98	1.16	2.54	-0.53
$Mg_2@WS_2$	-1.86	-0.09	-0.73	1.18	2.36	-0.74
$Ca_2@WS_2$	-1.75	-0.47	-0.97	1.17	2.64	-0.61
$Sr_2@WS_2$	-1.68	-0.36	-0.85	1.16	2.65	-0.61
$Ba_2@WS_2$	-1.52	-0.05	-0.63	1.16	2.48	-0.53
CaMg@WS ₂	-1.82	-0.37	-1.11	1.17	2.45	-0.66
CaSr@WS ₂	-1.71	-0.44	-0.93	1.16	2.64	-0.61
$CaBa@WS_2$	-1.63	-0.35	-0.88	1.16	2.57	-0.56
$Mg_2@WSe_2$	-1.86	-0.19	-0.86	1.18	2.52	-0.74
$Ca_2@WSe_2$	-1.82	-0.37	-0.90	1.17	2.56	-0.63
Sr ₂ @WSe ₂	-1.77	-0.31	-0.79	1.17	2.55	-0.64
Ba ₂ @WSe ₂	-1.64	-0.04	-0.58	1.16	2.37	-0.56
CaMg@WSe ₂	-1.84	-0.36	-1.08	1.17	2.50	-0.68
CaSr@WSe ₂	-1.80	-0.35	-0.86	1.17	2.56	-0.62
CaBa@WSe ₂	-1.73	-0.32	-0.82	1.16	2.47	-0.58

Table S3. Calculated limiting potential (U_L , in V), potential-determining step (PDS), and reaction free energy of the first hydrogenation ($*N_2 + H^+ + e \rightarrow *N_2H$) (ΔG_1 , in eV) and last hydrogenation ($*NH_2 + H^+ + e \rightarrow *NH_3$) (ΔG_6 , in eV) for NRR on the studied AE₂@TMD DACs.

Systems	$U_{ m L}$	PDS	ΔG_1	ΔG_6
Mg ₂ @MoS ₂	-0.93	$*NH_2 \rightarrow *NH_3$	0.42	0.93
$Ca_2@MoS_2$	-0.97	$^*\mathrm{NH}_2 \to ^*\mathrm{NH}_3$	0.45	0.97
$Sr_2@MoS_2$	-0.97	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.55	0.97
$Ba_2@MoS_2$	-0.71	$^*N_2 \rightarrow ^*N_2H$	0.71	0.68
CaMg@MoS ₂	-0.83	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.39	0.83
$CaSr@MoS_2$	-0.92	$^*\mathrm{NH}_2 \to ^*\mathrm{NH}_3$	0.53	0.92
CaBa@MoS2	-0.75	$^*\mathrm{NH}_2 \! \rightarrow ^*\mathrm{NH}_3$	0.61	0.75
Mg2@MoSe2	-0.78	$*NH_2 \rightarrow *NH_3$	0.39	0.78
Ca ₂ @MoSe ₂	-0.77	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.46	0.77
Sr ₂ @MoSe ₂	-0.79	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.54	0.79
Ba ₂ @MoSe ₂	-0.67	$^*N_2 \rightarrow ^*N_2H$	0.67	0.46
CaMg@MoSe ₂	-0.70	$^{*}\mathrm{NH}_{2} \rightarrow ^{*}\mathrm{NH}_{3}$	0.38	0.70
CaSr@MoSe ₂	-0.70	$^{\ast}NH_{2}\rightarrow ^{\ast}NH_{3}$	0.52	0.70
CaBa@MoSe ₂	-0.60	$*N_2 \rightarrow *N_2H$	0.60	0.56
$Mg_2@WS_2$	-0.86	$^{*}\mathrm{NH}_{2} \rightarrow ^{*}\mathrm{NH}_{3}$	0.37	0.86
$Ca_2@WS_2$	-1.13	$^{\ast}NH_{2}\rightarrow ^{\ast}NH_{3}$	0.37	1.13
$Sr_2@WS_2$	-1.10	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.51	1.10
$Ba_2@WS_2$	-0.66	$*N_2 \rightarrow *N_2H$	0.66	0.61
CaMg@WS ₂	-0.91	$^{\ast}NH_{2}\rightarrow ^{\ast}NH_{3}$	0.24	0.91
CaSr@WS ₂	-1.05	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.46	1.05
CaBa@WS ₂	-0.87	$^{\ast}NH_{2}\rightarrow ^{\ast}NH_{3}$	0.56	0.87
Mg ₂ @WSe ₂	-1.06	$^{*}\mathrm{NH}_{2} \rightarrow ^{*}\mathrm{NH}_{3}$	0.38	1.06
$Ca_2@WSe_2$	-1.09	$^{\ast}\mathrm{NH}_{2} \rightarrow ^{\ast}\mathrm{NH}_{3}$	0.39	1.09
Sr ₂ @WSe ₂	-1.04	$*NH_2 \rightarrow *NH_3$	0.53	1.04
$Ba_2@WSe_2$	-0.80	$^*N_2 \rightarrow ^*N_2H$	0.80	0.67
CaMg@WSe ₂	-1.02	$^*\mathrm{NH}_2 \to ^*\mathrm{NH}_3$	0.28	1.02
CaSr@WSe ₂	-1.03	$^*\mathrm{NH}_2 \to ^*\mathrm{NH}_3$	0.47	1.03
CaBa@WSe ₂	-0.87	$^*\mathrm{NH}_2 \to ^*\mathrm{NH}_3$	0.62	0.87