Electronic Supplementary Information

Boosting electrocatalytic hydrogen evolution over Mo₂C-W₂C heterostructure by interface-induced electron modulation

Lijuan Jiang, Ruijing Wang, Huimin Zhou, Guang-Feng Wei*, Xuefeng Wang*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical

Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.

*Corresponding Authors: weigf@tongji.edu.cn; xfwang@tongji.edu.cn

Contents

Table S1 Composition of samples obtained at different Mo/W feeding ratios.
Fig. S1 SEM images of the Mo ₂ C/RGO, Mo ₂ C-W ₂ C/RGO, Mo ₂ C-W ₂ C/RGO, and W ₂ C/RGO2
Fig. S2 EDS spectra
Fig. S3 Raman spectra of the GO and RGO
Fig. S4 (a) Survey XPS spectra. High-resolution XPS profiles of (b) C 1s; (c) N 1s4
Fig. S5 (a) Polarization curves, (b) Tafel plots, (c) C_{dl} , and (d) Nyquist plots in 0.5 M H ₂ SO ₄ 5
Table S2 Comparison of catalytic parameters in 0.5 M H ₂ SO ₄
Table S3 Comparison of HER performance for Mo ₂ C-W ₂ C/RGO with other reported carbon-
based electrocatalysts7
Table S4 Comparison of catalytic parameters of different HER catalysts in 0.5 M H ₂ SO ₄
Fig. S6 The C_{dl} of different materials in 0.5 M H ₂ SO ₄
Fig. S7 SEM image of Mo ₂ C-W ₂ C/RGO-0.56 after long-term durability test in 0.5 M H ₂ SO ₄ 9
Table S5 Comparison of catalytic parameters of different HER catalysts in 1.0 M KOH10
Fig. S8 (a) Polarization curves, (b) Tafel plots, (c) C_{dl} , and (d) Nyquist plots in 1.0 M KOH11
Table S6 Comparison of catalytic parameters in 1.0 M KOH.
Fig. S9 The C_{dl} of different materials in 1.0 M KOH12
Fig. S10 SEM image of Mo ₂ C-W ₂ C/RGO-0.56 after long-term durability test in 1.0 M KOH13
Fig. S11 XRD patterns and SEM images of W ₂ C, Mo ₂ C and Mo ₂ C-W ₂ C13
Fig. S12 (a) Polarization curves in 0.5 M H ₂ SO ₄ . (b) Polarization curves in 1.0 M KOH14
Fig. S13 The density of states for Mo ₂ C, W ₂ C, Mo ₂ C-W ₂ C15
REFERENCES

products	$(NH_4)_6Mo_7O_{24}\cdot 4H_2O^a(g)$	$(NH4)_{6}H_{2}W_{12}O_{40}{\cdot}xH_{2}O^{b}\left(g\right)$	Mo/W ^c	Mo/(Mo+W) ^d
Mo ₂ C-W ₂ C/RGO-0.24	0.18	0.74	0.33	0.24
Mo ₂ C-W ₂ C/RGO-0.56	0.36	0.50	0.5	0.56
Mo ₂ C-W ₂ C/RGO-0.75	0.53	0.25	3.0	0.75

 Table S1. Composition of samples obtained at different Mo/W feeding ratios.

^a Data was the molar amount of $(NH_4)_6Mo_7O_{24}$; $4H_2O$ used in synthesis. ^b Data was the molar amount of $(NH_4)_6H_2W_{12}O_{40}$; xH_2O used in synthesis. ^c Data was Mo/W feeding molar ratio. ^d Data was calculated from the result of EDS.

 $W_2C/RGO-0.24$, and (d) W_2C/RGO .

Fig. S2 EDS spectra of (a) $Mo_2C-W_2C/RGO-0.24$, (b) $Mo_2C-W_2C/RGO-0.56$, and (c) $Mo_2C-W_2C/RGO-0.75$.

Fig. S3 Raman spectra of the GO and RGO.

Fig. S4 (a) Survey XPS spectra. High-resolution XPS profiles of (b) C 1s; (c) N 1s.

Fig. S5 (a) Polarization curves and (b) Tafel plots of Mo₂C/RGO, Mo₂C-W₂C/RGO-0.24, Mo₂C-W₂C/RGO-0.56, Mo₂C-W₂C/RGO-0.75, and W₂C/RGO in 0.5 M H₂SO₄. (c) The C_{dl} of different materials obtained at 0.15 V versus RHE. (d) Nyquist plots (at $\eta = 200$ mV).

H₂SO₄. **Onset potential** Tafel slope **R**_{ct} j_0 $C_{\rm dl}$ η_{10} Catalysts (mV vs RHE) (mV vs RHE) (mA cm⁻²) (mV dec⁻¹) (mF dec⁻¹) (Ω) 110 Mo₂C/RGO 43 0.384 73 27.3 11.3 $Mo_2C-W_2C/RGO-0.75$ 0.407 37.1 9.8 41 103 68 $Mo_2C\text{-}W_2C/RGO\text{-}0.56$ 30 81 0.428 38.5 5.9 56 Mo₂C-W₂C/RGO-0.24 137 25.3 10.34 66 0.251 75 W₂C/NRGO 67 151 0.244 94 20.0 33.1

Table S2. Comparison of catalytic parameters of Mo_2C/RGO , $Mo_2C-W_2C/RGO-0.75$, $Mo_2C-W_2C/RGO-0.56$, $Mo_2C-W_2C/RGO-0.24$, and $W_2C/NRGO$ catalysts in 0.5 M H_2SO_4 .

Catalyst	Electrolyte	Tafel slope (mV dec ⁻¹)	η ₁₀ (mV vs. RHE)	Ref.	
M. C.W.C.BCO.A.S.	0.5 M H ₂ SO ₄	56	81	This work	
M0 ₂ C-W ₂ C/RGO-0.56	1.0 M KOH	59	87		
Trainer d WCN	1.0 M KOH	-	138	1	
I winned WCN	0.5 M H ₂ SO ₄	65	128	1	
WOWDONG	1.0 M KOH	59.07	196.2	2	
W ₂ C/WP@NC	0.5 M H ₂ SO ₄	77.4	116.37	2	
W.COONT OF	1.0 M KOH	56.2	148		
W ₂ C@CN1-S8	0.5 M H ₂ SO ₄	57.4	176	3	
	1.0 M KOH	57.4	145		
Mo ₂ C@BNC	0.5 M H ₂ SO ₄	68.3	184	4	
	1.0 M KOH	94.7	124	-	
WC@C/NF	0.5 M H ₂ SO ₄	-	208	5	
CoO/Mo ₂ C	1.0 M KOH	80	107	6	
Co/Mo ₂ C@C	1.0 M KOH	68	98	7	
	1.0 M KOH	68	154	8	
Mo ₂ N-Mo ₂ C/HGr	0.5 M H ₂ SO ₄	55	157		
Mo ₂ C/MoS ₂ -rGO	1.0 M KOH	52	112	9	
	1.0 M KOH	72.2	116	10	
WC-W ₂ C/HCDs	$0.5 \mathrm{~M~H_2SO_4}$	52.5	96		
Mo ₂ C-CoO@N-CNFs-8	1.0 M KOH	76	115	11	
Ni-W ₂ C	1.0 M KOH	73.8	88	12	
	1.0 M KOH	72	205	13	
WS ₂ /W ₂ C@NSPC	0.5 M H ₂ SO ₄	68	126		
	1.0 M KOH	51	147		
W-W ₂ C/CNT-6	0.5 M H ₂ SO ₄	56	155	14	

Table S3. Comparison of HER performance for Mo₂C-W₂C/RGO with other reported carbon-based electrocatalysts.

Catalyst	Onset potential	η_{10}	<i>j</i> 0	Tafel slope		
	(mV vs RHE)	(mV vs RHE)	(mA cm ⁻²)	(mV dec ⁻¹)	$R_{\rm ct}$ (S2)	
Pt/C	0	21	0.945	21	/	
Mo ₂ C-W ₂ C/RGO-0.56	30	81	0.428	56	5.9	
Mo ₂ C/RGO	43	110	0.384	73	11.3	
W ₂ C/RGO	67	151	0.278	94	33.1	
RGO	278	380	0.005	104	4040	

Table S4. Comparison of catalytic parameters of different HER catalysts in 0.5 M H_2SO_4 .

Fig. S6 The C_{dl} of different materials obtained at 0.15 V versus RHE in 0.5 M H₂SO₄.

Fig. S7 SEM image of Mo_2C - W_2C/RGO -0.56 after long-term durability test in 0.5 M

 $H_2SO_4.$

Catalyst	Onset potential (mV vs RHE)	η ₁₀ (mV vs RHE)	<i>j</i> ₀ (mA cm ⁻²)	Tafel slope (mV dec ⁻¹)	$R_{\rm ct}(\Omega)$
Pt/C	8	27	0.933	41	/
Mo ₂ C-W ₂ C/RGO-0.56	33	87	0.398	59	4.4
Mo ₂ C/RGO	66	134	0.120	64	6.5
W ₂ C/RGO	76	159	0.102	93	27.9
RGO	296	491	0.0316	189	279.7

Table S5. Comparison of catalytic parameters of different HER catalysts in 1.0 MKOH.

Fig. S8 (a) Polarization curves and (b) Tafel plots of Mo₂C/RGO, Mo₂C-W₂C/RGO-0.24, Mo₂C-W₂C/RGO-0.56, Mo₂C-W₂C/RGO-0.75, and W₂C/RGO in 1.0 M KOH. (c) The C_{dl} of different materials obtained at 0.15 V versus RHE. (d) Nyquist plots (at $\eta = 200$ mV).

KOH. **Onset potential** Tafel slope j_0 C_{dl} **R**_{ct} η_{10} Catalysts (mV vs RHE) (mV vs RHE) (mV dec⁻¹) (mF dec⁻¹) (mA cm⁻²) **(Ω)** Mo₂C/RGO 0.112 66 134 64 17.2 6.5 Mo₂C-W₂C/RGO-0.75 56 114 0.184 60 22.3 5.5 Mo₂C-W₂C/RGO-0.56 33 87 0.398 59 26.3 4.4 Mo₂C-W₂C/RGO-0.24 69 135 0.132 64 23.8 8.2 W₂C/NRGO 159 0.102 93 27.9 76 12.7

Table S6. Comparison of catalytic parameters of Mo_2C/RGO , $Mo_2C-W_2C/RGO-0.75$, $Mo_2C-W_2C/RGO-0.56$, $Mo_2C-W_2C/RGO-0.24$, and $W_2C/NRGO$ catalysts in 1.0 M KOH.

Fig. S9 The C_{dl} of different materials obtained at 0.15 V versus RHE in 1.0 M KOH.

Fig. S10 SEM image of $Mo_2C-W_2C/RGO-0.56$ after long-term durability test in 1.0 M KOH.

Fig. S11 (a) XRD pattern and (b) SEM image of W₂C. (c) XRD pattern and (d) SEM image of Mo₂C. (e) XRD pattern and (f) SEM image of Mo₂C-W₂C.

Fig. S12 (a) Polarization curves of RGO, W_2C , W_2C/RGO , Mo_2C , Mo_2C/RGO Mo_2C-W_2C , and $Mo_2C-W_2C/RGO-0.56$ in 0.5 M H₂SO₄. (b) Polarization curves of RGO, W_2C , W_2C/RGO , Mo_2C , Mo_2C/RGO Mo_2C-W_2C , and $Mo_2C-W_2C/RGO-0.56$ in 1.0 M KOH.

Fig. S13 The density of states for Mo_2C , W_2C , Mo_2C-W_2C . The dashed line denotes the position of the Fermi level.

REFERENCES

 Z. Kou, T. Wang, H. Wu, L. Zheng, S. Mu, Z. Pan, Z. Lyu, W. Zang, S. J. Pennycook, J. Wang. Twinned Tungsten Carbonitride Nanocrystals Boost Hydrogen Evolution Activity and Stability. Small, 2019, 15, 1900248.

(2) P. Wei, X. Sun, M. Wang, J. Xu, Z. He, X. Li, F. Cheng, Y. Xu, Q. Li, J. Han, H. Yang, Y. Huang. Construction of an N-Decorated Carbon-Encapsulated W₂C/WP Heterostructure as an Efficient Electrocatalyst for Hydrogen Evolution in Both Alkaline and Acidic Media. ACS Appl. Mater. Interfaces, 2021, 13, 53955-53964.

(3) Y. Hu, B. Yu, W. Li, M. Ramadoss, Y. Chen. W₂C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. Nanoscale, 2019, 11, 4876-4884.

(4) S. Wu, M. Chen, W. Wang, J. Zhou, X. Tang, D. Zhou, C. Liu. Molybdenum carbide nanoparticles assembling in diverse heteroatoms doped carbon matrix as efficient hydrogen evolution electrocatalysts in acidic and alkaline medium. Carbon, 2021, 171, 385-394.

(5) C. Tyagi, C. Lagrost, V. Dorcet, F. Tessier, B. Fabre. Carbon-Embedded Tungsten Carbide Electrocatalysts Derived from Self-Deposited Tungsten Oxide for the pH-Universal Hydrogen Evolution Reaction. ACS Appl. Energy Mater., 2023, 6, 6842-6850.

(6) H.-Y. Chen, L. Yang, R.-X. Wang, W.-J. Zhang, R. Liu, Y.-Z. Yun, N. Wang, S. Ramakrishna, L. Jiao, Y.-Z. Long. Constructing CoO/Mo₂C Heterostructures with Interfacial Electron Redistribution Induced by Work Functions for Boosting Overall

Water Splitting. Small, 2023, 2304086.

(7) S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang, N. Li. Dual synergistic effects between Co and Mo₂C in Co/Mo₂C heterostructurefor electrocatalytic overall water splitting. Chem. Eng. J., 2022, 430, 132697.

(8) H. Yan, Y. Xie, Y. Jiao, A. Wu, C. Tian, X. Zhang, L. Wang, H. Fu. Holey reduced graphene oxide coupled with an Mo₂N-Mo₂C heterojunction for efficient hydrogen evolution. Adv. Mater., 2018, 30, 1704156.

(9) X. Xu, H. Ma, W. Xu, X. Liu, H. Chu, L. Zhang, X. Wu. Heterostructure and phase engineering synergistically activated highly efficient alkaline hydrogen evolution in Mo₂C/MoS₂-rGO hybrids. Int. J. Hydrogen Energy., 2023, 48, 27557-27567.

(10) S.-C. Sun, F.-X. Ma, H. Jiang, M.-X. Chen, P. Xu, L. Zhen, B. Song, C.-Y. Xu. Encapsulating dual-phase WC-W₂C nanoparticles into hollow carbon dodecahedrons for all-pH electrocatalytic hydrogen evolution. Chem. Eng. J., 2023, 462, 142132.

(11) T. Gong, J. Zhang, Y. Liu, L. Hou, J. Deng, C. Yuan. Construction of heterophase Mo₂C-CoO@N-CNFs film as a self-supported Bi-functional catalyst towards overall water splitting. Chem. Eng. J., 2023, 451, 139025.

(12) B. Yang, C. G. Wei, X. H. Wang, H. C. Fu, X. H. Chen, Q. Zhang, Y. H. Luo, H.
Q. Luo, N. B. Li. Optimization of hydrogen adsorption on W₂C by late transition metaldoping for efficient hydrogen evolution catalysis. Materials Today Nano, 2023, 23, 100350.

(13) Y. Li, X. Wu, H. Zhang, J. Zhang. Interface Designing over WS₂/W₂C for

Enhanced Hydrogen Evolution Catalysis. ACS Appl. Energy Mater., 2018, 1, 3377-3384.

(14) Y. Hu, B. Yu, M. Ramadoss, W. Li, D. Yang, B. Wang, Y. Chen. Scalable Synthesis of Heterogeneous W-W₂C Nanoparticle-Embedded CNT Networks for Boosted Hydrogen Evolution Reactionin Both Acidic and Alkaline Media. ACS Sustainable Chem. Eng., 2019, 7, 11, 10016-10024.