# **Electronic Supplementary Information**

# Sub-4 nm PtCu<sub>3</sub> intermetallic catalyst with L1<sub>2</sub>-ordered structure toward efficient activity and durability for oxygen reduction

Haibo Jiang,<sup>a</sup> Xiang Xie,<sup>a</sup> Liyuan Bi,<sup>a</sup> Shengwei Yu,<sup>b</sup> Jiaxi Zeng,<sup>a</sup> Lili Zhang,<sup>a</sup> Jianhua Shen\*<sup>a</sup> and Chunzhong Li\*<sup>b</sup>

- a.) Shanghai Engineering Research Center of Hierarchical Nanomaterials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science & Technology; Shanghai 200237, China
- b.) School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
- \*.) Corresponding author.

E-mail address: jianhuashen@ecust.edu.cn; czli@ecust.edu.cn

#### **Experimental section**

## **Chemicals:**

Chloroplatinic acid hexahydrate (H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O, AR, 37.5wt%), Copper(II) chloride hexahydrate (CuCl<sub>2</sub>·6H<sub>2</sub>O, AR,99wt%) and urea ((NH<sub>2</sub>)<sub>2</sub>CO, AR, 99.5wt%) were purchased from Aladdin. 20 wt% Pt/C was purchased from Shanghai Hesen Electric. Vulcan XC-72 was purchased from Macklin. All chemicals were used as received and not further purified.

## Synthesis of L1<sub>2</sub>-PtCu<sub>3</sub>/C catalyst

In a typical synthesis,35 mg of urea, 30 mg of carbon black (Vulcan XC-72), 1.68 mL of H<sub>2</sub>PtCl<sub>6</sub>·6H<sub>2</sub>O (10 mg/mL) with 25.6 mg of CuCl<sub>2</sub>·2H<sub>2</sub>O were sonicated for 1h to obtain a homogeneously dispersed black suspension. The suspension was flash frozen in liquid nitrogen and freeze dried overnight to obtain a dry solid black powder. The dried powder was then held in a tube furnace with the formation gas (5% hydrogen + 95% argon) at an elevated temperature rate of 10°C/min up to 550°C for 2h. To induce ordered transitions of the atoms at high temperatures, the furnace chamber was heated to 850 °C at a ramp rate of 5 °C/min for 2 h. After natural cooling to room temperature in the furnace chamber, the black solid powder was extracted, then washed several times with deionized water and heated at 60 °C for 8 hours in a vacuum oven to obtain L1<sub>2</sub>-PtCu<sub>3</sub>/C catalyst.

## Synthesis of N-PtCu<sub>3</sub>/C catalyst

The synthesis conditions were consistent with those of  $L1_2$ -PtCu<sub>3</sub> except that no urea was added to the precursor.

#### Materials characterization

The X-ray diffraction patterns of catalyst particles were collected on a D8 ADVANCE (Bruker, Germany) diffractometer in Cu K<sub> $\alpha$ </sub> radiation ( $\lambda = 1.5406$  Å) to determine the crystal structure and particle size. The operation voltage and current were

40 kV and 20 mA, respectively. The microstructure was analyzed using transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) to analyze the micro-morphology operation by the JEOL-2100 experimental setup with LaB<sub>6</sub> cathode at 200 kV. High angle annular dark field scanning transmission electron (HAADF-STEM) imaging was performed on a Grand ARM 300F connected to an energy-dispersive X-ray spectroscopy (EDX). Inductively coupled plasma-atomic emission spectroscopy (ICP-AES) was manipulated to assess the concentration of the catalyst on Agilent 725ES. X-ray photoelectron spectroscopy (XPS) measurements were carried out using K-Alpha Plus (Somerfield, USA) with Al-Ka X-ray as the illuminant to Obtain the electronic structure and elemental composition of catalyst surfaces.

#### **Electrochemical tests**

All electrochemical measurements were operated in a standard three-electrode system. The glassy carbon electrode was mounted on a rotating disk electrode as the working electrode (5 mm in diameter), a saturated calomel electrode as the reference electrode, and a carbon rod as the counter electrode. Catalyst ink was obtained by dispersing 5 mg of catalyst powder in a mixture of 960  $\mu$ L of isopropanol and 40  $\mu$ L of Nafion (5 wt.%) and sonicated for 1 h. The catalyst film was obtained by depositing 4  $\mu$ l of ultrasonically homogeneous catalyst ink on the glassy carbon electrode and drying naturally at room temperature. cyclic voltammetry curves were recorded in a 0.1 M HClO<sub>4</sub> aqueous solution passed through Ar at least 30 min with a potential interval of 0.06 V-1.3 V (vs RHE) and a scan rate of 100 mV s<sup>-1</sup>. ORR polarization curves were recorded in 0.1 M HClO<sub>4</sub> solution saturated with O<sub>2</sub> using linear scanning voltammetry curves at 1600 rpm and a scan rate of 10 mV s<sup>-1</sup>. Accelerated durability tests were performed in oxygen-saturated 0.1 M HClO<sub>4</sub> solution with a potential interval of 0.6-1.1 V (vs RHE) and a scan rate of 100 mV s<sup>-1</sup>.

The ECSAs are determined from charges associated with underpotentially deposited H ( $H_{upd}$ ). The electrochemical surface area of the catalyst is obtained from the following equation:

$$ECSA = \frac{Q_H}{C \times m_{Pt}} = \frac{S_H/\nu}{C \times m_{Pt}}$$

where  $Q_H$  is the charge consumed by the reaction (C m<sup>-2</sup>), C is the charge value of hydrogen adsorbed on the Pt surface in the monolayer (210×10<sup>-2</sup> µC cm<sup>-2</sup>), S<sub>H</sub> is the area of the H desorption area after subtracting the effect of the bilayer (V·mA), v is the scanning cycle rate (V s<sup>-1</sup>) and m<sub>Pt</sub> is the actual loading of Pt on the surface of the glassy carbon electrode (0.196 cm<sup>-2</sup>). The integral area of the H desorption peak (Q<sub>H</sub>) of the catalyst can be obtained from the cyclic voltammetry curve in the potential interval of 0.05 - 0.4 V vs. RHE.<sup>1</sup> The mass percentage of Pt in L1<sub>2</sub>-PtCu<sub>3</sub> is measured by ICP-AES to be 16.85% with commercial Pt/C of 20.02%. Therefore, the actual loading (m<sub>Pt</sub>) on the surface of the glassy carbon electrode is 3.37 µg and 4 µg, respectively.

The Koutecky-Levich equation was used to calculate the ORR kinetic currents:

$$\frac{1}{j_k} = \frac{1}{j_L} - \frac{1}{j} = \frac{1}{Bw^{1/2}} - \frac{1}{j}$$

where  $j_k$ ,  $j_L$ , and j represent kinetic current density, limiting diffusion current density, and experimentally measured current density, respectively. B is a constant and w is the electrode rotation rate.

#### Density functional theory method

The first-principles density functional theory (DFT) calculations were performed in the Dmol3 code. Electron exchange and associated energies are described based on the generalized gradient approximation Perdew-Burke-Ernzerhof (GGA-PBE) generalization. Two numerical basis sets and the polarization function (DNP) are used to expand valence electrons, and the relativistic effect is simulated by DFT semi-core pseudopotential. Based on the image results of HAADF-STEM, the PtCu alloy covering two Pt atomic layers is modeled as the structure of L1<sub>2</sub>-PtCu<sub>3</sub> with the pure Pt (111) as the reference. Simulations were carried out using a four-layer periodic cell, with the bottom two layers replacing the Cu atoms periodically with Pt atoms in the ratio Pt: Cu = 1:3, followed by cell structure optimization. The bottom two layers of atoms are held in place, relaxing the rest. The Pt (100) surface was built to simulate  $L1_2$ -PtCu<sub>3</sub> with a two-layer Pt skin, and the vacuum layer was defined to be 10Å.

The oxygen reduction reaction involves the chemical adsorption of molecular  $O_2$  on the catalyst surface and a four-electron transfer step of three oxygen-containing intermediates<sup>2, 3</sup>:

$$O_2^+ * \rightarrow *O_2$$
$$*O_2 + H^+ + e^- \rightarrow *OOH$$
$$*OOH + H^+ + e^- \rightarrow H_2O + *O$$
$$*O + H^+ + e^- \rightarrow *OH$$
$$*OH + H^+ + e^- \rightarrow H_2O$$

\* is considered to be an adsorption site on the catalyst surface.

The adsorption energy of the oxygen-containing intermediate was calculated by the following equation:

$$\Delta E(*OOH) = E(*OOH) - E(*) - [2E(H_2O) - 1.5E(H_2)]$$
$$\Delta E(*O) = E(*O) - E(*) - [2E(H_2O) - E(H_2)]$$
$$\Delta E(*OH) = E(*OH) - E(*) - [2E(H_2O) - 0.5E(H_2)]$$

The value of Gibbs free energy change for the oxygen-containing intermediate at a given potential is calculated by the following equation:

$$\Delta G(*OOH) = \Delta E(*OOH) + \Delta ZPE(*OOH) - \Delta TS(*OOH) - 3eU + 3\Delta G(ph)$$
$$\Delta G(*O) = \Delta E(*O) + \Delta ZPE(*O) - \Delta TS(*O) - 2eU + 2\Delta G(ph)$$
$$\Delta G4 (*OH) = \Delta E(*OH) + \Delta ZPE(*OH) - \Delta TS(*OH) - eU + \Delta G(ph)$$

The value of Gibbs free energy change for each step at a given potential is calculated by the following equation:

$$\Delta G1 = \Delta G(*OOH) - 4(1.23 - eU)$$
$$\Delta G2 = \Delta G(*O) - \Delta G(*O)$$

$$\Delta G3 = \Delta G4 (*OH) - \Delta G(*O)$$
$$\Delta G4 = -\Delta G4 (*OH)$$

The Gibbs free energy value for each step at a given potential is calculated by the following equation:

G1 = 4.92 $G2 = G1 + \triangle G1$  $G3 = G2 + \triangle G2$  $G4 = G3 + \triangle G3$  $G5 = G4 + \triangle G3$ 

The oxygen adsorption energy i.e. E<sub>ads</sub> (O) was calculated as:

 $E_{ads}(O) = E_{total} - E(O) - E *$ 

 $E_{total}$ , E(O), and  $E^*$  represent the energies of the oxygen adsorption system, O atoms, and without oxygen adsorption system, respectively.



**Fig. S1** (a) TEM images of annealed nanoparticles without urea protection. (b) The statistical distribution of the particle size.



Fig. S2 EDS spectrum of  $L1_2$ -PtCu<sub>3</sub>/C. Before (a) and after (b) electrochemical activation.



Fig. S3 XRD spectrum of Pt/C.



Fig. S4 XPS full survey spectra of  $L1_2$ -PtCu<sub>3</sub>/C (a) and Pt/C (b).



Fig. S5 Comparison of electrochemically active areas (ECSA) of  $L1_2$ -PtCu<sub>3</sub>/C and Pt/C after different ADT cycles.



Fig. S6 TEM images of  $L1_2$ -PtCu<sub>3</sub>/C before (a) and after (b) 20k ADT.



Fig. S7 Information on the particle size distribution of L1<sub>2</sub>-PtCu<sub>3</sub>/C after 20k ADT.



Fig. S8 TEM images of Pt/C before (a) and after (b) 10k ADT.



**Fig. S9** Main (bottom) and top (top) views of the four electron reaction path atomic model of L1<sub>2</sub>-PtCu<sub>3</sub>, from left to right, is \*, \*OH and \*OOH.



**Fig. S10** Main (bottom) and top (top) views of the four electron reaction path atomic model of Pt (111), from left to right, is \*, \*OH and \*OOH.

|                    | before | 20k ADT | after 20 | )k ADT |
|--------------------|--------|---------|----------|--------|
| Pt mass dispersion | 17.43% |         | 16.0     | )8%    |
|                    | wt%    | at%     | wt%      | at%    |
| Pt                 | 49.44% | 24.15%  | 50.82%   | 25.18% |
| Cu                 | 50.56% | 75.85%  | 49.18%   | 74.84% |
| Pt-Cu ratio        | 1:3.14 |         | 1:2      | .97    |

The mass fraction of Pt before and after the 10k cycles for Pt/C are 20.02% and 17.78%.

Table S2. Rietveld refined fitting results of  $L1_2$ -PtCu<sub>3</sub>/C and Pt/C

|                                       | XRD size | lattice  | Lattice       | lattice | D (%)                 | COF  | Space       |
|---------------------------------------|----------|----------|---------------|---------|-----------------------|------|-------------|
|                                       | (nm)     | constant | shrinkage (%) | volume  | $\mathbf{K}_{wp}(70)$ | UOI  | group       |
| L1 <sub>2</sub> -PtCu <sub>3</sub> /C | 6.42     | 3.70     | -4.14         | 50.7    | 8.54                  | 1.13 | Pm-3m (221) |
| Pt/C                                  | /        | 3.92     | /             | 60.2    | 7.62                  | 1.01 | Fm-3m (225) |

The lattice mismatch is calculated by the equation as follows:

$$\varepsilon = \frac{d_{L1_2 - PtCu_3} - d_{Pt(bulk)}}{d_{Pt(bulk)}} = \frac{0.266 - 0.2775}{0.2755} = -4.14\%$$

Table S3. The Order Degree of XRD Refinement of L1<sub>2</sub>-PtCu<sub>3</sub>/C

|                                       | (100)/(111) | (100) order | (110)/(111) | (110) order |
|---------------------------------------|-------------|-------------|-------------|-------------|
|                                       |             | degree      |             | degree      |
| Standard Card                         | 0.380       | 1           | 0.288       | 1           |
| L1 <sub>2</sub> -PtCu <sub>3</sub> /C | 0.364       | 0.96        | 0.181       | 0.63        |

The order degree is calculated by the ratio of the peak heights between the ordered superlattice characteristic peaks and the main peaks to the corresponding peaks in the standard card.<sup>4</sup>

|       |                           | Pt/C     | PtCu <sub>3</sub> /C |
|-------|---------------------------|----------|----------------------|
| Pt 4f | Pt $4f_{7/2}$             | 71.91 eV | 71.20 eV             |
|       | ${ m Pt}^{2+}$ $4f_{7/2}$ | 72.79 eV | 71.75 eV             |
|       | Pt $4f_{5/2}$             | 75.42 eV | 74.80 eV             |
|       | $Pt^{2+} 4f_{5/2}$        | 76.91 eV | 77.25 eV             |

Table S4. Pt 4f peak splitting results for Pt/C and PtCu<sub>3</sub>/C

Table S5. Comparison of intermetallic catalysts between particle size and ECSA

| Catalyst                                | annealing temperature<br>(°C) | TEM size<br>(nm) | ECSA<br>(m <sup>2</sup> g <sup>-1</sup> ) | Reference |
|-----------------------------------------|-------------------------------|------------------|-------------------------------------------|-----------|
| L1 <sub>2</sub> -PtCu <sub>3</sub> /C   | 850                           | 3.98             | 50.24                                     | This work |
| Pt <sub>1</sub> Co <sub>1</sub> -IMC@Pt | 700                           | 5.30             | 43.50                                     | 5         |
| fct-PtMn/C                              | 800                           | 4.30             | 28.90                                     | 6         |
| Pt <sub>1</sub> Fe <sub>1</sub> -IMC/C  | 700                           | 4.10             | 43.00                                     | 4         |
| O-PtCuNF/C                              | 300                           | 28.80            | 35.10                                     | 7         |
| Pt <sub>3</sub> Mn                      | 700                           | 4.00             | 44.00                                     | 8         |
| intermetallic/C                         | /00                           | 4.23             | 44.00                                     | 0         |
| L1 <sub>0</sub> -CoPt                   | 700                           | 5.00             | /                                         | 9         |

| Cotalust                               | Specific activity      | Mass activity      | Deference |
|----------------------------------------|------------------------|--------------------|-----------|
| Catalyst                               | (mA cm <sup>-2</sup> ) | $(A mg_{Pt}^{-1})$ | Kelerence |
| L1 <sub>2</sub> -PtCu <sub>3</sub> /C  | 2.63                   | 1.33               | This work |
| Pt1Co1-IMC@Pt                          | 1.1                    | 0.53               | 5         |
| fct-PtMn/C                             | 1.43                   | 0.41               | 6         |
| Pt <sub>1</sub> Fe <sub>1</sub> -IMC/C | 0.99                   | 0.45               | 4         |
| Pt <sub>3</sub> Mn intermetallic/C     | 1.877                  | 0.386              | 8         |
| L1 <sub>0</sub> -CoPt                  | 1.87                   | 0.68               | 9         |
| PtCo <sub>3</sub> -H600                | 1.74                   | 0.74               | 10        |
| Pt <sub>3</sub> Fe/C                   | 1.364                  | 0.454              | 11        |
| L10-PtZn/C <sub>MOF</sub>              | 1.13                   | 0.926              | 12        |
| Int-PtCuN/KB                           | 1.18                   | 1.15               | 13        |

**Table S6.** Comparison of RDE tests at 0.9 V vs. RHE based on intermetallic catalysts in this work and in orther studies.

| Catalyst                             |            | ECSA              | Specific activity   | Mass activity    | MA loss   |
|--------------------------------------|------------|-------------------|---------------------|------------------|-----------|
| Cuturyst                             |            | $m^2 g_{Pt}^{-1}$ | mA cm <sup>-2</sup> | A $mg_{Pt}^{-1}$ | after ADT |
| L <sub>12</sub> PtCu <sub>3</sub> /C | Intial     | 50.24             | 2.63                | 1.33             | /         |
|                                      | 20k cycles | 44.52             | 2.18                | 0.97             | 27.1%     |
| <b>D</b> ./C                         | Intial     | 71.40             | 0.16                | 0.11             | /         |
| Pt/C                                 | 10k cycles | 42.08             | 0.15                | 0.063            | 42.7%     |

**Table S7.** Electrochemical performance index depletion before and after accelerated durability testing of Pt/C and  $L1_2$ -PtCu<sub>3</sub>/C. The specific activity and mass activity (MA) were calculated at 0.9V vs. RHE.

| Catalyst                              | Retention of MA (%) | Cycles (k) | Reference |
|---------------------------------------|---------------------|------------|-----------|
| L1 <sub>2</sub> -PtCu <sub>3</sub> /C | 72.2                | 20         | This work |
| A-MS-Pt <sub>1.5</sub> Ni             | 90.8                | 5          | 14        |
| PtCo-1000/C                           | 85.2                | 5          | 15        |
| Pt <sub>3</sub> Mn intermetallic/C    | 71.5                | 10         | 8         |
| PtFe-H/Pt                             | 77.0                | 10         | 16        |
| PtZnCu-F-NC                           | 70.0                | 10         | 17        |
| Pt-Ni PNCs                            | 64.1                | 10         | 18        |
| Pt <sub>2.4</sub> Ni/C                | 40.0                | 10         | 19        |
| Pd-Se NPs/C                           | 71.8                | 15         | 20        |
| PtPd                                  | 74.4                | 15         | 21        |
| PtCuNi-W/C                            | 65.9                | 20         | 22        |
| PtCo NFs                              | 33.4                | 30         | 23        |
| Ga-doped PtNi                         | 39.1                | 30         | 24        |

**Table S8.** Comparison of retention of MA between the present work and other electrocatalysts at different adt turn numbers.

|                                      | U vs. RHE | G1   | G2    | G3    | G4    | G5   |
|--------------------------------------|-----------|------|-------|-------|-------|------|
|                                      | (V)       | (eV) | (eV)  | (eV)  | (eV)  | (eV) |
|                                      | U=0       | 4.92 | 3.44  | 2.07  | 0.95  | 0    |
| L1 <sub>2</sub> -PtCu <sub>3</sub> – | U=1.23    | 0    | -0.22 | -0.39 | -0.28 | 0    |
| D: (111)                             | U=0       | 4.92 | 3.74  | 1.97  | 0.81  | 0    |
| Pt (111)                             | U=1.23    | 0    | 0.046 | -0.49 | -0.42 | 0    |

Table S9. The Gibbs free energy value of  $L1_2$ -PtCu<sub>3</sub> and Pt (111)

Table S10. Lattice constants and lattice shrinkage of  $L1_2$ -PtCu<sub>3</sub> based on DFT calculations.

| Catalyst                           | $a_{[100]}/a_{Pt}$ | lattice contraction | $a_{[010]}/a_{Pt}$ | lattice contraction | $a_{[001]}/a_{Pt}$ | lattice contraction |
|------------------------------------|--------------------|---------------------|--------------------|---------------------|--------------------|---------------------|
| L1 <sub>2</sub> -PtCu <sub>3</sub> | 0.942              | 5.72%               | 0.942              | 5.72%               | 0.942              | 5.72%               |

# Reference

- 1. C. H. Yao, F. Li, X. Li and D. G. Xia, *J Mater Chem*, 2012, 22, 16560-16565.
- 2. A. Kulkarni, S. Siahrostami, A. Patel and J. K. Norskov, *Chem Rev*, 2018, **118**, 2302-2312.
- Z. Ma, Z. P. Cano, A. P. Yu, Z. W. Chen, G. P. Jiang, X. G. Fu, L. Yang, T. N. Wu, Z. Y. Bai and J. Lu, *Angew Chem Int Edit*, 2020, 59, 18334-18348.
- D. C. Lai, Q. Q. Cheng, Y. Zheng, H. Zhao, Y. B. Chen, W. B. Hu, Z. Q. Zou, K. Wen, L. L. Zou and H. Yang, *J Mater Chem A*, 2022, 10, 16639-16645.
- 5. Q. Q. Cheng, S. Yang, C. H. Fu, L. L. Zou, Z. Q. Zou, Z. Jiang, J. L. Zhang and H. Yang, *Energ Environ Sci*, 2022, **15**, 278-286.
- 6. M. Song, F. Li, Q. Zhang, T. Shen, G. Luo, D. Li and D. Wang, *Chem Eng J*, 2023, DOI: 10.1016/j.cej.2023.147287.
- H. Y. Kim, T. Kwon, Y. Ha, M. Jun, H. Baik, H. Y. Jeong, H. Kim, K. Lee and S. H. Joo, *Nano Lett*, 2020, 20, 7413-7421.
- 8. J. Lim, C. Jung, D. Hong, J. Bak, J. Shin, M. Kim, D. Song, C. Lee, J. Lim, H. Lee, H. M. Lee and E. Cho, *J Mater Chem A*, 2022, **10**, 7399-7408.
- 9. J. Y. Guan, J. Q. Zhang, X. L. Wang, Z. P. Zhang and F. Wang, *Advanced Materials*, 2023, **35**.
- 10. Z. Wang, X. Yao, Y. Kang, L. Miao, D. Xia and L. Gan, *Advanced Functional Materials*, 2019, **29**.
- 11. C. Jung, C. Lee, K. Bang, J. Lim, H. Lee, H. J. Ryu, E. Cho and H. M. Lee, *Acs Appl Mater Inter*, 2017, **9**, 31806-31815.
- 12. T. Zhao, E. G. Luo, Y. Li, X. Wang, C. P. Liu, W. Xing and J. J. Ge, *Sci China Mater*, 2021, **64**, 1671-1678.
- X. R. Zhao, H. Cheng, L. Song, L. L. Han, R. Zhang, G. H. Kwon, L. Ma, S. N. Ehrlich, A. I. Frenkel, J. Yang, K. Sasaki and H. L. Xin, *Acs Catal*, 2021, 11, 184-192.
- F. P. Kong, Z. H. Ren, M. N. Banis, L. Du, X. Zhou, G. Y. Chen, L. Zhang, J. J. Li, S. Z. Wang, M. S. Li, K. Doyle-Davis, Y. L. Ma, R. Y. Li, A. P. Young, L. J. Yang, M. Markiewicz, Y. J. Tong, G. P. Yin, C. Y. Du, J. Luo and X. L. Sun, *Acs Catal*, 2020, 10, 4205-4214.
- 15. Y. F. Liao, L. S. Peng, C. L. Wu, Y. G. Yan, H. J. Xie, Y. G. Chen and Y. Wang, *Nano Res*, 2023, **16**, 10708-10709.
- 16. T. W. Song, M. X. Chen, P. Yin, L. Tong, M. Zuo, S. Q. Chu, P. Chen and H. W. Liang, *Small*, 2022, **18**.
- 17. T. Liu, F. Sun, M. H. Huang and L. H. Guan, *Acs Appl Energ Mater*, 2022, DOI: 10.1021/acsaem.2c01692.
- T. Y. Xia, K. Zhao, Y. Q. Zhu, X. Y. Bai, H. Gao, Z. Y. Wang, Y. Gong, M. L. Feng, S. F. Li, Q. Zheng, S. G. Wang, R. M. Wang and H. Z. Guo, *Advanced Materials*, 2023, 35.
- 19. G. D. Niu, M. Zhou, X. Yang, J. Park, N. Lu, J. G. Wang, M. J. Kim, L. D. Wang and Y. N. Xia, *Nano Lett*, 2016, **16**, 3850-3857.
- 20. Z. Y. Yu, S. L. Xu, Y. G. Feng, C. Y. Yang, Q. Yao, Q. Shao, Y. F. Li and X. Q. Huang, *Nano Lett*, 2021, **21**, 3805-3812.
- 21. R. F. Wu, P. Tsiakaras and P. K. Shen, *Appl Catal B-Environ*, 2019, **251**, 49-56.

- 22. W. Z. Tu, K. Chen, L. J. Zhu, H. C. Zai, E. Bin, X. X. Ke, C. F. Chen, M. L. Sui, Q. Chen and Y. J. Li, *Advanced Functional Materials*, 2019, **29**.
- 23. M. Wei, L. Huang, L. B. Li, F. Ai, J. Z. Su and J. K. Wang, *Acs Catal*, 2022, **12**, 6478-6485.
- 24. J. Lim, H. Shin, M. Kim, H. Lee, K.-S. Lee, Y. Kwon, D. Song, S. Oh, H. Kim and E. Cho, *Nano Lett*, 2018, **18**, 2450-2458.