Electronic Supplementary Information

Chalcogen Alloying Mediated Electronic Structure Modulation in Nb(S_xSe_(1-x))₂ Nanosheets for Hydrogen Evolution Reaction

Varsha Jha^a, Md. Samim Hassan^a, Ankita Kumari^a, Shubham Kumar^a, Sahil Singh^a, Jyoti Yadav^a, Dibyajyoti Ghosh,^{a,b,#} and Sameer Sapra^{a,*}

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India

^bDepartment of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016

*Email: sapra@chemistry.iitd.ac.in

Email: dibyajyoti.ghosh@mse.iitd.ac.in

Fig. S1 (a) color of precursor solution containing (PhCH₂)₂Se₂/(PhCH₂)₂S₂, NbCl₅ and oleyl amine (OLAM); (b) dropwise injection of precursor solution into pre-heated OLAM solution kept at 300 °C; (c) color change to black upon precursor injection.

Fig. S2 AFM images: (a) NbSe₂; (b) NbS₂ nanosheets. For NbSe₂, height profile is 1.8 nm, confirming 2 layers thickness. Whereas for NbS₂ it is 1.2 nm which confirms approximately 1 layer thickness, considering the presence of OLAM ligand $(0.5 \text{ nm})^1$. This confirms the transformation from monolayer to bilayer thickness, along c-axis with increasing Se content.

Fig. S3 Raman spectra of $Nb(S_xSe_{(1-x)})_2 NSs$ under 532nm laser.

To comprehend the structure of Nb(S_xSe_(1-x))₂, Raman spectra were collected under a 532 nm laser. It displays two vibration modes with Nb-Se modes at a lower frequency than Nb-S modes. The spectrum for NbSe₂ shows contribution from two peaks, i.e., in-plane E_{2g} mode (245 cm⁻¹) and out-of-plane A_{1g} mode (225 cm⁻¹) vibrations.² With initial x = 0.25 doping of S, there is slight shift towards the higher wavenumber observed due the softening of Nb-Se modes. For x=0.25, 0.5 and 0.75 there is dominance of Nb-Se modes compared to Nb-S modes which is indicative of relatively higher Se concentration in Nb(S_xSe_(1-x))₂.³ Complete substitution of Se with S in NbS₂ features peaks at 307 cm⁻¹ and 355 cm⁻¹ assignable to E_{2g} and A_{1g} modes, respectively.⁴

x = 0 NbSe₂

x = 0.75 NbS_{2/3}Se_{1/2}

Fig. S4 FE-SEM based corresponding elemental distribution maps and spectrum showing uniform distribution of Nb, Se and S of x = 0; 0.25; x = 0.75; x = 1. The FE-SEM image shows sheet type surface morphology. EDX spectrum exhibits relatively high atomic percentage of Se w.r.t. S.

Loaded composition	EDX Composition			
	At. % of Nb	At. % of S	At. % of Se	
$X = 0 \text{ (NbSe}_2)$	36.46	-	63.54	
$X = 0.25 (NbS_{1/2}Se_{3/2})$	38.1	3.12	58.2	
X = 0.5 (NbSSe)	37.9	9.31	46.24	
X = 0.75 (NbS _{3/2} Se _{1/2})	37.5	15.47	39.8	
$X = 1 \text{ (NbS}_2)$	43.64	56.36	-	

Table S1 S:Se ratios of loaded composition and FE-SEM EDX elemental mapping for all compositions highlighting the actual S content is lesser compared to the nominal amounts. To explain this observation, we propose the reason to be difference in rate of decomposition of the

chalcogen precursors with C-S bond being relatively stronger than C-Se bond (Bond dissociation energy: C-S: 699 KJ/mol and C-Se: 582 KJ/mol)⁵ and hence lesser S goes into the lattice than feed in amounts.

Fig. S5 high resolution XPS spectra of (a) Se - 3d spectra shows two peaks at 53.01 and 54.94 eV corresponding to $3d_{5/2}$ and $3d_{3/2}$ binding energies.^{6,7} The 3d spectra of Se can be deconvoluted into two doublets possibly due to presence of Se intermediates left over from the decomposition of (PhCH₂)₂Se₂.⁸ Also, there is peak due to SeO_x in all compositions; (b) S-2p spectra.

Fig. S6 (a,b) band plots of bilayer NbSe₂ and monolayer NbS₂; (c,d) DOS plots of x=0.25, x=0.75 for Nb(S_xSe_(1-x))₂ showing variation in d band contribution at fermi level with chalcogen variation.

Fig. S7 (a,b) TGA curves of NbSe₂ and NbS₂ nanosheets (NSs) respectively showing approximately 30% loss in the molecular weight at 368°C corresponding to loss due to surface OLAM ligand. Surface ligands were removed to enhance the conductivity; (c,d) FTIR spectra of NbSe₂ and NbS₂ NSs respectively, before and after annealing at 500°C. All other compositions were also annealed at 500°C for electrochemical studies.

Fig. S8 (a) For x = 0.5 (NbSSe), chronoamperometry response at different potentials referenced w.r.t. RHE; (b) corresponding linear fit of steady state current density at 90th second gives the tafel slope of 121mV/dec for x = 0.5 composition; (c) LSV curves with current density normalized w.r.t ECSA showing high intrinsic conductivity of x = 0.5 composition.

Fig. S9 (a-e) Cyclic voltametric curves of Nb($S_xSe_{(1-x)}$)₂ for x = 0, 0.25, 0.5, 0.75, 1. CV for all compositions of 2D Nb($S_xSe_{(1-x)}$)₂ NSs were collected in the non-faradaic potential window i.e., 0 – 0.2V vs RHE at scan rates 5 mV/s, 10 mV/s, 20 mV/s, 40 mV/s and 60 mV/s.

ECSA calculations:

Cyclic voltammetry curves were collected in the non-faradaic region. Half of the difference in the anodic and cathodic current densities at the intermediate value of CV curves (i.e. 0.1 V) was plotted as a function of scan rate. Linear fitting of the graph gives double layer capacitance (Cdl). Cdl values are a direct measure of the electrochemical surface area.^{9,10}

$$ECSA = \frac{C_{dl}}{C_s}$$

 C_s is the specific capacitance, the value of which is 40 $\mu F cm^{-2} per cm_{ECSA}^2$

Electrochemical Impedance fitting parameters:

	$\mathbf{X} = 0$ \mathbf{NbSe}_2	X = 0.25 NbS _{1/2} Se _{3/2}	X = 0.5 NbSSe	X = 0.75 NbS _{3/2} Se _{1/2}	X = 1 NbS ₂
R _s	14.8 Ω	24.1 Ω	6.42 Ω	10.2 Ω	30.3 Ω
$R_{ct}(R1)$	663 Ω	822 Ω	246 Ω	452 Ω	4.82 kΩ
R_{ct} (R2)	35.2 Ω	102 Ω	31.4 Ω	32.3 Ω	205 Ω

Table S2 fitting parameter values of the Nyquist plot obtained via Electrochemical Impedance

 Spectroscopy. *Rs* : Solution resistance; *R*1, *R*2 : Electrolyte and charge transfer resistance ; *CPE*

 : Constant phase element

	Synthesis methodology	$\eta (j) = 10 mA / cm2)$	Tafel slope (b)	Reference
NbSeS (x=0.5)	Hot injection colloidal synthesis	290 mV	75 mV/dec	This work
NbS ₂ /rGO composite	Solid state synthesis	500 mV	72mV/dec	11
P-Se co-doped NbS ₂	Liquid-phase phosphating selenization pyrolysis method	363 mV	116.7 mV/dec	12
3R NbS ₂	Solid state synthesis	467 mV	110 mV/dec	13
Li- TFSI treated NbS ₂	Solid state synthesis	310 mV	_	14
Few layer NbS ₂	Electrochemical exfoliation of bulk NbS ₂	236 mV	125 mV/dec	15
Exfoliated NbSeS and Co doped NbSeS	CVT	346 mV 173 mV	147 mV/dec 64 mV/dec	16
Nb ₂ Se ₉ without centrifugation Nb ₂ Se ₉ at 2000 rpm	Flux method Vacuum filtration over porous carbon	-310 mV -294 mV	129.7 mV/dec	17
Nb2Se9 at 4000 rpm Nb2Se9 at 6000 rpm	paper	-203 mV -170 mV	108 mV/dec 86.7 mV/dec 82.2 mV/dec	

Table S3 Comparison of HER activity of Nb based dichalcogenide electrocatalysts in 0.5MH2SO4.

Vacancy formation energy:

To calculate the defect formation energy (E_f) of the S/Se vacancy, the following expression was used:

$$E_f(vac) = E(vac) - E(pristine) - \mu(S \text{ or } Se)$$

where E(Vac) is the total energy of system with an S or Se vacancy, E(pristine) is the total energy of the system without any defects, and S/Se is the chemical potential of S or Se.

Fig. S10 (a,b) chemical structure of reaction intermediates for H adsorbed on Se_{top} and Se_{top} near S for defect free model in x=0.5 (NbSeS) composition respectively. Lower Gibbs free energy (ΔG_{H*}) value reflects role of polarized electric field in alloy sample due to crystal distortion leading to easy desorption process; (c) reaction intermediate depicting H adsorption on sulphur vacancy (V_s) in between layers.

Gibbs Free Energy Calculations:

By using an equation, we were able to estimate the Gibbs free energy of atomic hydrogen adsorption.

$$\Delta G_H = \Delta E_H + ZPE - T\Delta S_H$$

$$\Delta E_{H} = E_{\text{Nb}(\text{SxSe}(1-x))2 + H} - E_{\text{Nb}(\text{SxSe}(1-x))2} - \frac{1}{2} E_{H_{2}}$$

 ΔE_H represents energy of hydrogen adsorption. The equation considers the difference in hydrogen's zero-point energy and entropy between its adsorbed state and its gas phase.

Post HER Characterization of x = 0.5 (NbSSe):

Fig. S11 TEM image of x = 0.5 (NbSSe) after 9 h of chronoamperometry response. TEM image shows that the nanosheet morphology is retained after electro-catalysis.

Fig. S12 XRD Pattern before and after electro-catalysis of NbSSe showing no phase change or formation of any other active species. The XRD pattern shows that the catalyst reamins structurally stable during the HER process.

Fig. S13 After electro-catalysis FE-SEM image, corresponding elemental mapping and spectrum of x = 0.5 (NbSSe) showing uniform distribution of elements i.e. Nb, Se and S. The spectrum clearly shows the detected elements are retained after running chronoamperometry response.

References:

- 1 M. S. Hassan, A. Jana, S. Gahlawat, N. Bhandary, S. Bera, P. P. Ingole and S. Sapra, *Bull. Mater. Sci.*, 2019, **42**, 74.
- 2 S. Naik, A. Pradhan, A. Mishra and S. L. Samal, *J. Phys. Chem. C*, 2022, **126**, 13762–13773.
- 3 O. E. Meiron, L. Houben and M. Bar-Sadan, *RSC Adv.*, 2015, **5**, 88108–88114.
- 4 A. Mansouri and N. Semagina, *ACS Appl. Nano Mater.*, 2018, **1**, 4408–4412.
- 5 T.L. Cottrell, *The Strengths of Chemical Bonds*, 1958, 41-53.
- 6 Q. Gong, L. Cheng, C. Liu, M. Zhang, Q. Feng, H. Ye, M. Zeng, L. Xie, Z. Liu and Y. Li, *ACS Catal.*, 2015, **5**, 2213–2219.
- 7 Q. Fu, L. Yang, W. Wang, A. Han, J. Huang, P. Du, Z. Fan, J. Zhang and B. Xiang, *Adv. Mater.*, 2015, **27**, 4732–4738.
- R. W. Lord, J. Fanghanel, C. F. Holder, I. Dabo and R. E. Schaak, *Chem. Mater.*, 2020, 32, 10227–10234.
- 9 M. S. Hassan, P. Basera, S. Gahlawat, P. P. Ingole, S. Bhattacharya and S. Sapra, J. Mater. Chem. A, 2021, 9, 9837–9848.
- 10 A. Singh, J. Rohilla, M. S. Hassan, C. Trupthi Devaiah, P. P. Ingole, P. K. Santra, D. Ghosh and S. Sapra, *ACS Appl. Nano Mater.*, 2022, **5**, 4293–4304.
- 11 D. Gopalakrishnan, A. Lee, N. K. Thangavel and L. M. Reddy Arava, *Sustain. Energy Fuels*, 2018, **2**, 96–102.
- 12 W. Shen, L. Qiao, J. Ding and Y. Sui, *Appl. Surf. Sci.*, 2022, **581**, 152419.
- P. Chithaiah, S. Mallick, D. C. Binwal, A. Bhui and C. N. R. Rao, *New J. Chem.*, 2023, 47, 17098-17102.

- L. Najafi, S. Bellani, R. Oropesa-Nuñez, B. Martín-García, M. Prato, V. Mazánek, D.
 Debellis, S. Lauciello, R. Brescia, Z. Sofer and F. Bonaccorso, *J. Mater. Chem. A*, 2019, 7, 25593–25608.
- 15 J. Si, Q. Zheng, H. Chen, C. Lei, Y. Suo, B. Yang, Z. Zhang, Z. Li, L. Lei, Y. Hou and K. Ostrikov, *ACS Appl. Mater. Interfaces*, 2019, **11**, 13205–13213.
- 16 Y. Ren, X. Miao, J. Zhang, Q. Lu, Y. Chen, H. Fan, F. Teng, H. Zhai, X. He, Y. Long, C. Zhang and P. Hu, *J. Mater. Chem. A*, 2023, **11**, 2690–2697.
- F. O. T. Agyapong-Fordjour, S. Oh, J. Lee, S. Chae, K. H. Choi, S. H. Choi, S. Boandoh,
 W. Yang, J. Huh, K. K. Kim and J. Y. Choi, ACS Appl. Energy Mater., 2019, 2, 5785– 5792.