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Fig. S1 (a) color of precursor solution containing (PhCH2)2Se2/(PhCH2)2S2, NbCl5 and oleyl amine 

(OLAM); (b) dropwise injection of precursor solution into pre-heated OLAM solution kept at 300 

°C; (c) color change to black upon precursor injection.  
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Fig. S2 AFM images: (a) NbSe2; (b) NbS2 nanosheets. For NbSe2, height profile is 1.8 nm, 

confirming 2 layers thickness. Whereas for NbS2 it is 1.2 nm which confirms approximately 

1 layer thickness, considering the presence of OLAM ligand (0.5 nm)1. This confirms the 

transformation from monolayer to bilayer thickness, along c-axis with increasing Se content. 
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To comprehend the structure of Nb(SxSe(1-x))2, Raman spectra were collected under a 532 nm 

laser. It displays two vibration modes with Nb-Se modes at a lower frequency than Nb-S modes. 

The spectrum for NbSe2 shows contribution from two peaks, i.e., in-plane 𝐸2𝑔 mode (245 cm-1) 

and out-of-plane 𝐴1𝑔 mode (225 cm-1) vibrations.2 With initial x = 0.25 doping of S, there is 

slight shift towards the higher wavenumber observed due the softening of Nb-Se modes. For 

x=0.25, 0.5 and 0.75 there is dominance of Nb-Se modes compared to Nb-S modes which is 

indicative of relatively higher Se concentration in Nb(SxSe(1-x))2.
3 Complete substitution of Se 

with S in NbS2 features peaks at 307 cm-1 and 355 cm-1 assignable to 𝐸2𝑔  and  𝐴1𝑔  modes, 

respectively.4 
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Fig. S3 Raman spectra of Nb(SxSe(1-x))2 NSs under 532nm laser. 
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Fig. S4 FE-SEM based corresponding elemental distribution maps and spectrum showing uniform 

distribution of Nb, Se and S of x = 0; 0.25; x = 0.75; x = 1. The FE-SEM image shows sheet type 

surface morphology. EDX spectrum exhibits relatively high atomic percentage of Se w.r.t. S. 

 

 

Table S1 S:Se ratios of loaded composition and FE-SEM EDX elemental mapping for all 

compositions highlighting the actual S content is lesser compared to the nominal amounts. To 

explain this observation, we propose the reason to be difference in rate of decomposition of the 

Loaded composition EDX Composition 

 At. % of Nb At. % of S At. % of Se 

X = 0 (NbSe2) 36.46 - 63.54 

X = 0.25 (NbS1/2Se3/2) 38.1 3.12 58.2 

X = 0.5 (NbSSe) 37.9 9.31 46.24 

X = 0.75  (NbS3/2Se1/2) 37.5 15.47 39.8 

X = 1 (NbS2)  43.64 56.36 - 

x = 1 

 NbS2 
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chalcogen precursors with C-S bond being relatively stronger than C-Se bond (Bond dissociation 

energy: C-S: 699 KJ/mol and C-Se: 582 KJ/mol)5 and hence lesser S goes into the lattice than 

feed in amounts.  

 

 

 

    

 Fig. S5 high resolution XPS spectra of (a) Se - 3d spectra shows two peaks at 53.01 and 54.94 

eV corresponding to 3d5/2 and 3d3/2 binding energies.6,7 The 3d spectra of Se can be deconvoluted 

into two doublets possibly due to presence of Se intermediates left over from the decomposition 

of (PhCH2)2Se2.
8 Also, there is peak due to SeOx in all compositions; (b) S-2p spectra. 
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Fig. S6 (a,b) band plots of bilayer NbSe2 and monolayer NbS2; (c,d) DOS plots of x=0.25, 

x=0.75 for Nb(SxSe(1-x))2 showing variation in d band contribution at fermi level with 

chalcogen variation. 
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Fig. S7 (a,b) TGA curves of NbSe2 and NbS2 nanosheets (NSs) respectively showing 

approximately 30% loss in the molecular weight at 368°C corresponding to loss due to surface 

OLAM ligand. Surface ligands were removed to enhance the conductivity; (c,d) FTIR spectra of 

NbSe2 and NbS2 NSs respectively, before and after annealing at 500°C. All other compositions 

were also annealed at 500°C for electrochemical studies. 
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Fig. S8 (a) For x = 0.5 (NbSSe), chronoamperometry response at different potentials referenced 

w.r.t. RHE; (b) corresponding linear fit of steady state current density at 90th second gives the 

tafel slope of 121mV/dec for x = 0.5 composition; (c) LSV curves with current density 

normalized w.r.t ECSA showing high intrinsic conductivity of x = 0.5 composition.  
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Fig. S9 (a-e) Cyclic voltametric curves of Nb(SxSe(1-x))2 for x = 0, 0.25, 0.5, 0.75, 1. CV for all 

compositions of 2D Nb(SxSe(1-x))2 NSs were collected in the non-faradaic potential window i.e., 0 – 0.2V 

vs RHE at scan rates 5 mV /s, 10 mV /s, 20 mV/s, 40 mV/s and 60 mV/s. 
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ECSA calculations: 

Cyclic voltammetry curves were collected in the non-faradaic region. Half of the difference in 

the anodic and cathodic current densities at the intermediate value of CV curves (i.e. 0.1 V) was 

plotted as a function of scan rate. Linear fitting of the graph gives double layer capacitance (Cdl). 

Cdl values are a direct measure of the electrochemical surface area.9,10  

𝐸𝐶𝑆𝐴 =  
𝐶𝑑𝑙

𝐶𝑠
⁄  

𝐶𝑠is the specific capacitance, the value of which is 40 µ𝐹𝑐𝑚−2 𝑝𝑒𝑟 𝑐𝑚𝐸𝐶𝑆𝐴
2  

 

Electrochemical Impedance fitting parameters: 

 

 

 

 

 X = 0  

NbSe2 

X = 0.25 

NbS1/2Se3/2 

X = 0.5 

NbSSe 

X = 0.75 

NbS3/2Se1/2 

X = 1 

NbS2 

Rs 14.8 Ω 24.1 Ω 6.42 Ω 10.2 Ω 30.3 Ω 

Rct (R1) 663 Ω 822 Ω 246 Ω 452 Ω 4.82 kΩ 

Rct (R2) 35.2 Ω 102 Ω 31.4 Ω 32.3 Ω 205 Ω 

 

Table S2 fitting parameter values of the Nyquist plot obtained via Electrochemical Impedance 

Spectroscopy. 𝑅𝑠  : Solution resistance;  𝑅1, 𝑅2 : Electrolyte and charge transfer resistance ; 𝐶𝑃𝐸 

: Constant phase element 
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 Synthesis 

methodology 

𝜼 (𝒋
= 𝟏𝟎 𝒎𝑨
/𝒄𝒎𝟐) 

Tafel slope 

(𝒃) 

Reference 

NbSeS (x=0.5) Hot injection 

colloidal synthesis 

290 mV 75 mV/dec This work  

NbS2/rGO composite Solid state 

synthesis 

500 mV 72mV/dec 11 

P-Se co-doped NbS2 Liquid-phase 
phosphating 
selenization 

pyrolysis method 

363 mV 116.7 

mV/dec 

12 

3R NbS2  Solid state 

synthesis 

467 mV 110 mV/dec 13 

Li- TFSI treated NbS2 Solid state 

synthesis 

310 mV -  14 

Few layer NbS2 Electrochemical 

exfoliation of bulk 

NbS2 

236 mV 125 mV/dec 15 

Exfoliated NbSeS 

and Co doped NbSeS 

CVT 

 

346 mV  

173 mV  

147 mV/dec 

64 mV/dec 

16 

Nb2Se9 without 

centrifugation 

Nb2Se9 at 2000 rpm 

Nb2Se9 at 4000 rpm 

Nb2Se9 at 6000 rpm 

 

Flux method 

Vacuum filtration 

over porous carbon 

paper 

-310 mV 

 

-294 mV 

-203 mV 

-170 mV 

 

129.7 

mV/dec 

 

108 mV/dec 

86.7 

mV/dec 

82.2 

mV/dec 

17 

 

Table S3 Comparison of HER activity of Nb based dichalcogenide electrocatalysts in 0.5M 

H2SO4. 

 

Vacancy formation energy:  

To calculate the defect formation energy (𝐸𝑓) of the S/Se vacancy, the following expression was 

used: 
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𝐸𝑓(𝑣𝑎𝑐) =  𝐸 (𝑣𝑎𝑐) −  𝐸 (𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) −  µ(𝑆 𝑜𝑟 𝑆𝑒) 

where 𝐸(𝑉𝑎𝑐) is the total energy of system with an S or Se vacancy, 𝐸(𝑝𝑟𝑖𝑠𝑡𝑖𝑛𝑒) is the total 

energy of the system without any defects, and S/Se is the chemical potential of S or Se. 

 

 

Fig. S10 (a,b) chemical structure of reaction intermediates for H adsorbed on Setop and Setop 

near S for defect free model in x=0.5 (NbSeS) composition respectively. Lower Gibbs free 

energy (∆𝐺𝐻∗) value reflects role of polarized electric field in alloy sample due to crystal 

distortion leading to easy desorption process; (c) reaction intermediate depicting H adsorption 

on sulphur vacancy (Vs) in between layers. 

 

Gibbs Free Energy Calculations: 

By using an equation, we were able to estimate the Gibbs free energy of atomic hydrogen 

adsorption.  

∆𝐺𝐻 =  ∆𝐸𝐻 + 𝑍𝑃𝐸 − 𝑇∆𝑆𝐻 
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∆𝐸𝐻 =  𝐸Nb(SxSe(1−x))2  + H −  𝐸Nb(SxSe(1−x))2 −  
1

2
 𝐸𝐻2

 

∆𝐸𝐻  represents energy of hydrogen adsorption. The equation considers the difference in 

hydrogen's zero-point energy and entropy between its adsorbed state and its gas phase. 

 

Post HER Characterization of x = 0.5 (NbSSe): 

  

 

Fig. S11 TEM image of x = 0.5 (NbSSe) after 9 h of chronoamperometry response. TEM image 

shows that the nanosheet morphology is retained after electro-catalysis. 
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Fig. S12 XRD Pattern before and after electro-catalysis of NbSSe showing no phase change or 

formation of any other active species. The XRD pattern shows that the catalyst reamins 

structurally stable during the HER process. 
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Fig. S13 After electro-catalysis FE-SEM image, corresponding elemental mapping and spectrum 

of x = 0.5 (NbSSe) showing uniform distribution of elements i.e. Nb, Se and S. The spectrum 

clearly shows the detected elements are retained after running chronoamperometry response.  
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