Supporting Information

Flexible-rigid covalent nano-template of micron porous silicon towards ultra-robust Li-ion battery

Baoping Liu,^a HanJiang Li,^a Wen Luo,^{*a} Xiaofeng Zhang,^{*b} Zhongyun Liu,^c Pengfei Yin^d and

Rui Zhang *d

^a School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006,

China

^b Institute of New Materials, Guangdong Academy of Sciences, Guangzhou 510650, P. R.

China

^d School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta,

Georgia 30332, United States

^d Institute of New-Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China

* Corresponding author: Wen Luo (<u>wenluo@gdut.edu.cn</u>) or Xiaofang Zhang (<u>zxf200808@126.com</u>) or Rui Zhang (<u>ruiz@tju.edu.cn</u>)

Figure S1. SEM image of MPSi by directly acid etching

Figure S2. SEM image of AlSi@RTiO₂

Figure S3. SEM image of AlSi alloy

Figure S4. EDS image of the MPSi@RTiO₂

Figure S5. SEM image of molten salt and $FG_{N,P}$

Figure S6. TEM image of AlSi alloy

Figure S7. TEM image of MPSi@RTiO₂.

Figure S8. XRD image of Al-Si and MPSi

Figure S10. The XPS total spectrum of MPSi@RTiO₂@FG_{N.P.}

Figure S11. CV curves of MPSi at the first five cycles

Figure S12. CV curves of MPSi@RTiO₂ at the first five cycles

Figure S13. Charge/discharge voltage profiles of MPSi@RTiO₂

Figure S14. Charge/discharge voltage profiles of MPSi

Figure S15. Differential capacity (dQ/dV) profiles of MPSi@RTiO₂@FG_{N,P} anode.

Figure S16. SEM image before electrode cycle (a, d) MPSi, (b,e,) MPSi@RTiO₂ (c,f) MPSi@RTiO₂@FG_{N,P}

Figure S17.SEM images of the microscopic morphological changes of electrodes in the long-cycling process at 1000mA g^{-1} . (a, c) MPSi electrode after 200 cycles and (b, d) MPSi@RTiO₂ electrode after 600 cycles.

Figure S18. (a) electrochemical impedance spectroscopy, and (b) relationship between Z 'and $\omega^{-1/2}$ at lower angular frequencies

Figure S19. Charge/discharge voltage profiles of MPSi@RTiO_2@FG_{N,P}//LFP full cell

Sample	element	mass	volume	dilution	instrument	concentration	unit
		(g)	(mL)	ratio	reading (mg/L)		
MPSi@RTiO2@FG _{N,P}	Si	0.0597	50	50	17.5445	741409.1604	mg/kg
MPSi@RTiO2@FG _{N,P}	Ti	0.0597	50	50	2.6765	113104.4624	mg/kg
MPSi@RTiO2@FG _{N,P}	Ν	0.0597	50	50	0.0498	2106.1456	mg/kg
MPSi@RTiO2@FG _{N,P}	Р	0.0597	50	50	0.0213	902.4497	mg/kg

Table S1. The detailed data of ICP test

anodes	Loading (mg/cm ²)	Initial CE (%)	capacity (mA h g ⁻¹) after assigned cycles at a current density (A g ⁻¹)	refs
MPSi@RTiO ₂ @FG _{N,P}	2.9	81.2	1014/800/1	this work
PSi@CNS	0.5	74.6	1272/500/1	12
SiMP/SHP/CB	0.5	80	900/500/1	15
PAA-P(HEA-co-DMA) binder with SiMP	1	89.3	2245/255/1	17
mSi@OG@RGO	1	78	1750/160/2	19
PSi/SCNT-SRGO	0.6	81.1	1008/600/1	23
p-Si@C	0.6	58	868/300/1	28
SiO _x /C-CVD	1.5	67.4	972/500/0.5	32
P-Si/rGO	1.5	80.96	1258/300/1	34
EB	0.65	87.9	2300/200/1	35

Table S2. Comparison of synthesis strategies and electrochemical properties of micron silicon-based anode materials for lithium ion batteries