Supporting Information

Transport Properties of Ba(Zr,Ce,Y,Yb)O_{3-δ} Proton Conductor: the Real Role of Co-Substitution of Y and Yb

Hui Guo^{1,+}, Yifeng Li^{1,+}, Lulu Jiang¹, Yenan Sha¹, Shihang Guo¹, Donglin Han^{1,2,3,4*}

¹ College of Energy, Soochow University, No 1 Shizi Street, Gusu District, Suzhou 215006, China

² Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, No 1 Shizi Street, Gusu District, Suzhou 215006, China

³ Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, China

⁴ Light Industry Institute of Electrochemical Power Sources, Shahu Science & Technology Innovation Park, Suzhou 215638, China

⁺ These authors contributed equally.

* Corresponding author: Donglin Han (dlhan@suda.edu.cn)

1. XRD Patterns

Figure S1 Powder XRD patterns of (a) $BaZr_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.7}Ce_{0.1}Y_{0.2}O_{3-\delta}$, (c) $BaZr_{0.6}Ce_{0.2}Y_{0.2}O_{3-\delta}$, (d) $BaZr_{0.5}Ce_{0.3}Y_{0.2}O_{3-\delta}$, (e) $BaZr_{0.4}Ce_{0.4}Y_{0.2}O_{3-\delta}$, (f) $BaZr_{0.3}Ce_{0.5}Y_{0.2}O_{3-\delta}$, (g) $BaZr_{0.2}Ce_{0.6}Y_{0.2}O_{3-\delta}$, (h) $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-\delta}$ and (i) $BaCe_{0.8}Y_{0.2}O_{3-\delta}$ after sintering.

Figure S2 Powder XRD patterns of (a) $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.1}Ce_{0.7}Y_{0.15}Yb_{0.05}O_{3-\delta}$, (c) $BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-\delta}$, (d) $BaZr_{0.1}Ce_{0.7}Y_{0.05}Yb_{0.15}O_{3-\delta}$ and (e) $BaZr_{0.1}Ce_{0.7}Yb_{0.2}O_{3-\delta}$ after sintering.

Figure S3 Powder XRD patterns of (a) $BaCe_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaCe_{0.8}Y_{0.1}Yb_{0.1}O_{3-\delta}$ and (c) $BaCe_{0.8}Yb_{0.2}O_{3-\delta}$ after sintering.

Figure S4 Powder XRD patterns of (a) $BaZr_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.8}Y_{0.1}Yb_{0.1}O_{3-\delta}$ and (c) $BaZr_{0.8}Yb_{0.2}O_{3-\delta}$ after sintering.

2. SEM Images

Figure S5 SEM images of fractured cross-section of as-sintered (a) $BaZr_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.7}Ce_{0.1}Y_{0.2}O_{3-\delta}$, (c) $BaZr_{0.6}Ce_{0.2}Y_{0.2}O_{3-\delta}$, (d) $BaZr_{0.5}Ce_{0.3}Y_{0.2}O_{3-\delta}$, (e) $BaZr_{0.4}Ce_{0.4}Y_{0.2}O_{3-\delta}$, (f) $BaZr_{0.3}Ce_{0.5}Y_{0.2}O_{3-\delta}$, (g) $BaZr_{0.2}Ce_{0.6}Y_{0.2}O_{3-\delta}$, (h) $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-\delta}$ and (i) $BaCe_{0.8}Y_{0.2}O_{3-\delta}$.

Figure S6 SEM images of fractured cross-section of as-sintered (a) $BaZr_{0.1}Ce_{0.7}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.1}Ce_{0.7}Y_{0.15}Yb_{0.05}O_{3-\delta}$, (c) $BaZr_{0.1} Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-\delta}$, (d) $BaZr_{0.1}Ce_{0.7}Y_{0.05}Yb_{0.15}O_{3-\delta}$ and (e) $BaZr_{0.1}Ce_{0.7}Yb_{0.2}O_{3-\delta}$.

Figure S7 SEM images of fractured cross-section of as-sintered (a) $BaCe_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaCe_{0.8}Y_{0.1}Yb_{0.1}O_{3-\delta}$ and (c) $BaCe_{0.8}Yb_{0.2}O_{3-\delta}$.

Figure S8 SEM images of fractured cross-section of as-sintered (a) $BaZr_{0.8}Y_{0.2}O_{3-\delta}$, (b) $BaZr_{0.8}Y_{0.1}Yb_{0.1}O_{3-\delta}$ and (c) $BaZr_{0.8}Yb_{0.2}O_{3-\delta}$.

3. EMF Measurements

Figure S9 Change of voltage of $BaZr_{0.1}Ce_{0.7}Y_{0.1}Yb_{0.1}O_{3-\delta}$ with the elapsed time during switching the gas fed to the two electrodes at 600 °C.