Electronic Supplementary Information

Prior Oxidation of Ni Substrate Increases Number of Active Sites in Ni₃S₂ Obtained by Sulfidation and Enhances Its Multifunctional Electrocatalytic Activity

Anantharaj Sengeni^{1,2,3*} and Suguru Noda^{2,3}

^{1.} Laboratory for Electrocatalysis and Energy, Department of Chemistry, Indian Institute of Technology, Kanpur 208 016, Uttar Pradesh, India

^{2.} Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

^{3.} Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

* Correspondence should be addressed to: <u>ananths@iitk.ac.in</u>, and <u>anantharajsengeni@gmail.com</u>

Determination of loading of Ni₃S₂-O/Ni:

The mass loading of a catalyst grown on a substrate is calculated using the formula given below.

Loading of Ni₃S₂-O/Ni

= increase in mass as $Ni_3S_2 \times MW_{NiS2/3}/(MW_{NiS2/3}-MW_{Ni})$

+ increase in mass as Ni(OH)₂ × MW_{Ni(OH)2}/(MW_{Ni(OH)2}-MW_{Ni})

Please note that though the catalyst is identified as Ni₃S₂-O/Ni, the 'O' in the same stands for Ni(OH)₂ resulted from the peroxidation of the substrate. From the Ni $2p_{3/2}$ XPS spectrum (Figure 3a), we could see that the two deconvoluted Ni²⁺ peaks (assigned to NiO and Ni(OH)₂) are having almost the same area under the peak and Ni²⁺ assigned to NiO could also be assigned to Ni²⁺ in Ni₃S₂. Hence, we can assume that the half of surface Ni is in Ni₃S₂ while the remaining half is in Ni(OH)₂. Since the mass increase via conversion of 1 mol Ni to 1 mol Ni₃S₂ is 21.4 g (Ni+2/3S \rightarrow 1/3Ni₃S₂) and that to 1 mol Ni(OH)₂ is 34.0 g (Ni+2OH \rightarrow Ni(OH)₂), it is attributed that 21.4/(21.4+34.0)x100% = 38.6% of the measured increase in weight to Ni₃S₂ and 34.0/(21.4+34.0)x100% = 61.4% of the measured increase in weight to Ni(OH)₂ and calculated the total mass of Ni₃S₂-O on Ni to be ~0.6 mg cm⁻² as follows.

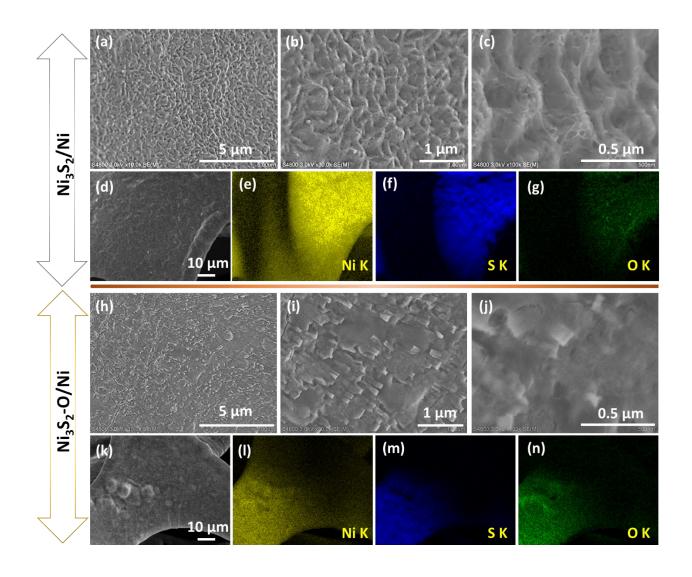
Total increase in weight after 100 s of anodization = 0.181 mg cm^{-2}

38.6% of total increase in weight corresponding to Ni_3S_2 in Ni_3S_2 -O on Ni = 0.070 mg cm⁻²

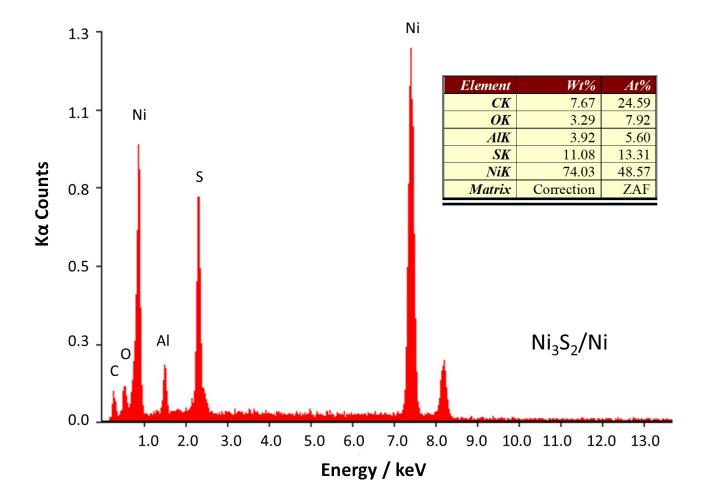
61.4% of total increase in weight corresponding to Ni(OH)₂ in Ni₃S₂-O on Ni = 0.111 mg cm⁻²

Hence,

Loading of Ni₃S₂ in Ni₃S₂-O on Ni


$$= 0.070 \text{ mg cm}^{-2} \times ((240.2 \text{ g mol}^{-1}/3)/(21.4 \text{ g mol}^{-1}) = 0.262 \text{ mg cm}^{-2}$$

Loading of Ni(OH)₂ in Ni₃S₂-O on Ni


 $= 0.111 \text{ mg cm}^{-2} \times (92.7 \text{ g mol}^{-1})/(34.0 \text{ g mol}^{-1}) = 0.303 \text{ mg cm}^{-2}$

Hence, the total loading of Ni₃S₂-O on Ni

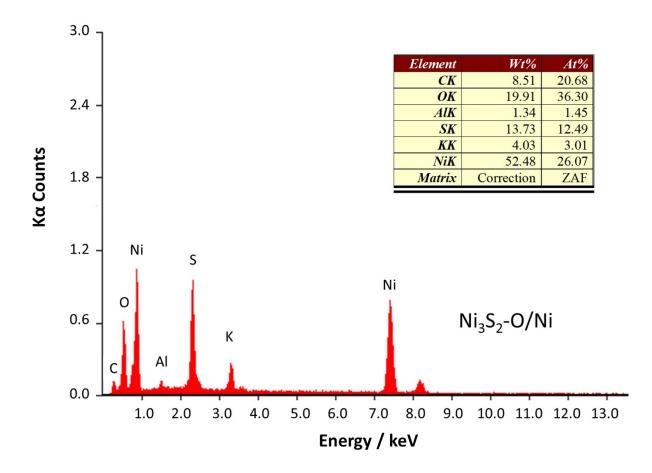
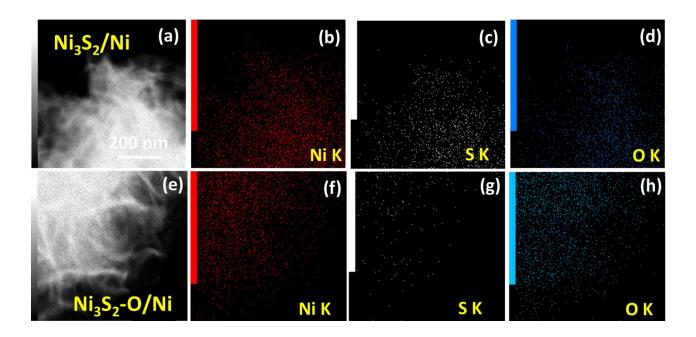
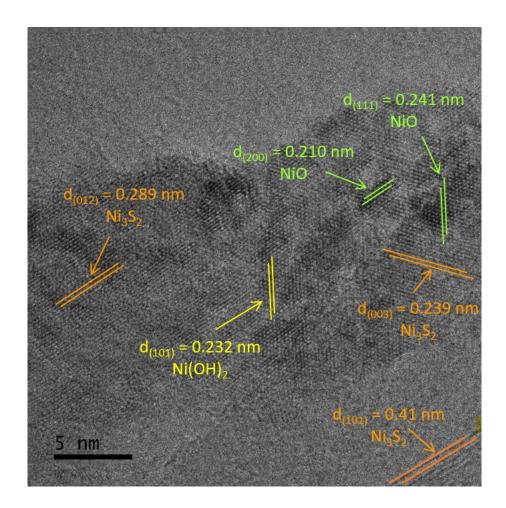
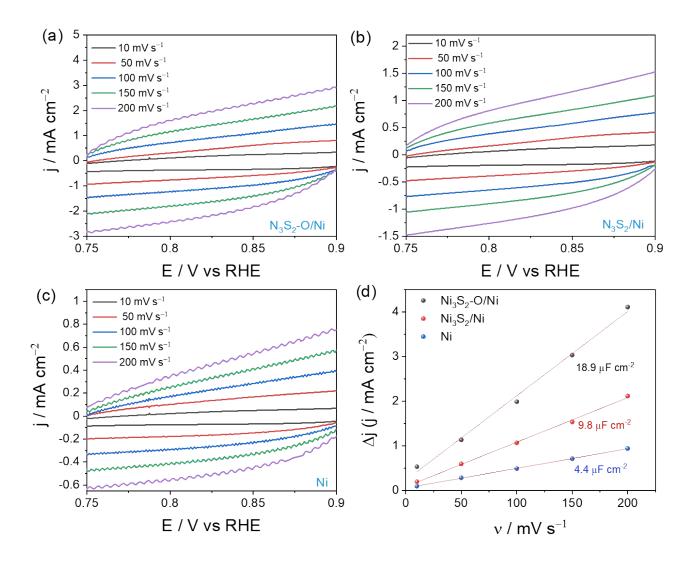
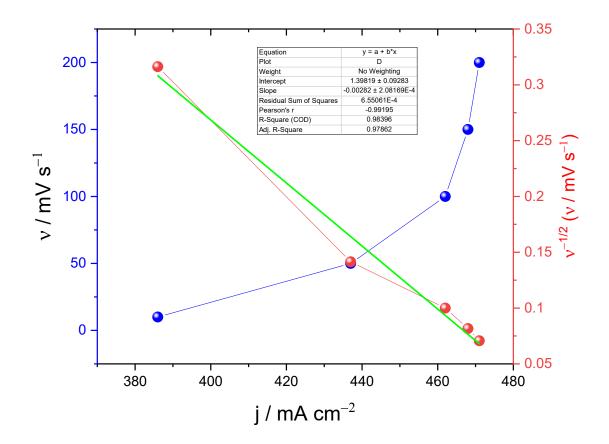

 $= 0.262 \text{ mg cm}^{-2} + 0.303 \text{ mg cm}^{-2} = 0.565 \text{ mg cm}^{-2} \approx 0.6 \text{ mg cm}^{-2}$

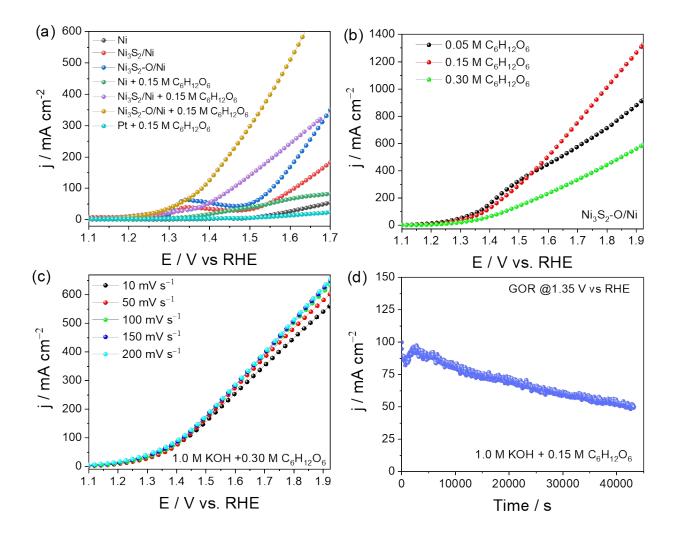
Figure S1: (a-c) SEM micrographs of Ni_3S_2/Ni with increasing magnifications. (d) Lowmagnification SEM micrograph illustrating the position of Ni_3S_2/Ni where the elemental EDS mapping was conducted for Ni (e), S (f), and O (g). (h-n) A similar set of SEM micrographs, lowmagnification SEM micrograph showing the position of Ni_3S_2 –O/Ni where elemental EDS mapping for the same set of elements was performed for Ni_3S_2 –O/Ni, and the corresponding elemental maps in the same order.

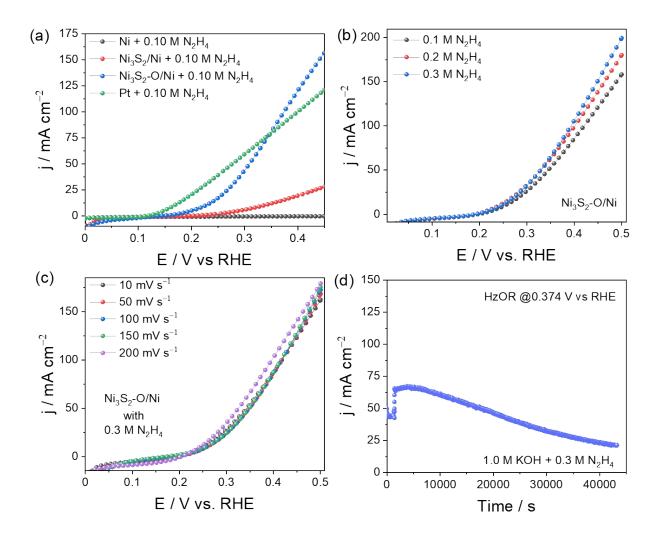
Figure S2: Energy dispersive X-ray spectrum of Ni_3S_2/Ni with the elemental composition in the table given as inset.

Figure S3: Energy dispersive X-ray spectrum of Ni_3S_2 -O/Ni with the elemental composition in the table given as inset.


Figure S4: (a-d) STEM-HAADF image of Ni_3S_2/Ni with EDS elemental mapping of Ni (b), S (c), and O (d), respectively. (e-h) A similar set of STEM-HAADF image and elemental maps for the same elements in Ni_3S_2 -O/Ni.


Figure S5: HRTEM image of Ni_3S_2 -O/Ni showing the lattice planes of Ni_3S_2 , NiO, and $Ni(OH)_2$ planes adjacent to one another.


Figure S6: CVs of Ni foam and Ni₃S₂-O/Ni in 1.0 M KOH with increasing scan rate in a non-Faradaic region. (c) Plot of difference in the double-layer charging current against scan rates.

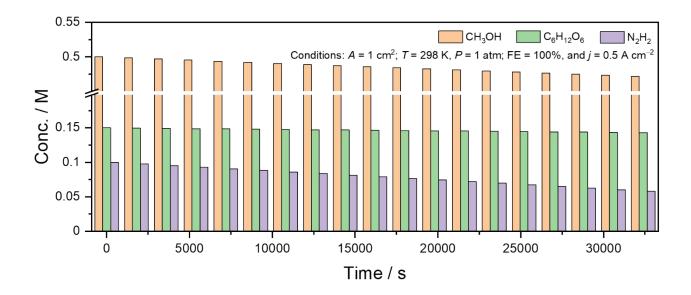

Figure S7: Plot of scan rate (blue) and inverse of the square root of the scan rate vs the MOR current density of Ni_3S_2 -O/Ni in 1.0 M KOH containing 0.5 M methanol at the anodic vertex potential (1.724 V vs RHE).

Figure S8: (a) GOR LSVs of Ni_3S_2 –O/Ni and Ni foam in 1.0 M KOH containing 0.15 M glucose recorded at 10 mV s⁻¹ in comparison with the LSVs obtained only in 1.0 M KOH. (b) GOR LSVs of Ni_3S_2 –O/Ni showing the concentration effect. (c) GOR LSVs of Ni_3S_2 –O/Ni showing the scan rate effect. (d) CA response of Ni_3S_2 –O/Ni at 1.35 V vs RHE in 1.0 M KOH containing 0.15 M glucose.

Figure S9: (a) HzOR LSVs of Ni_3S_2 –O/Ni and Ni foam in 1.0 M KOH containing 0.10 M hydrazine obtained at 10 mV s⁻¹ and provided in comparison with the LSVs obtained only in 1.0 M KOH solution. (b) HzOR LSVs of Ni_3S_2 –O/Ni showing the concentration effect. (c) HzOR LSVs of Ni_3S_2 –O/Ni showing the scan rate effect. (d) CA response of Ni_3S_2 –O/Ni at 0.374 V vs RHE in 1.0 M KOH containing 0.10 M hydrazine.

Figure S10: Calculated trend of change in concentrations of methanol (saffron), glucose (green), and hydrazine (purple) over time at prescribed conditions.