Support Information

An electrolyte additive of bromoxoindole enables uniform Li-ion flux and tunable Li_2S deposition for high-performance lithium-sulfur batteries

Jinxuan Zou,[†] Pengxuan He,[†] Yufang Zhang,[†] Dong Cai,^{*,†} Shuo Yang ^{*,†} Ying He,[†] Yangyang Dong,[†] Meiling Shu,[†] Ting Pan,[†] Yukai Chen,[†] Kuikui Xiao,[†] Xuemei Zhou,[†] Huagui Nie,[†] Zhi Yang,^{*,†}

[†]Key Laboratory of Carbon Materials of Zhejiang Province, Wenzhou University, Wenzhou 325035, China

‡College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China

*E-mail: caidong@wzu.edu.cn; yangshuo@wzu.edu.cn; yang201079@126.com

Figure S1. Digital photographs of the Li_2S_n ($4 \le n \le 8$) color changes after adding 0.5 wt% BOD for 30 min, 1 h, and 24 h.

Figure S2. UV-vis spectra of Li_2S_n (4 \leq n \leq 8) solution before and after adding 0.5 wt%

BOD electrolyte.

Figure S3. UV-vis spectra of Li_2S solution before and after adding 0.5 wt% BOD electrolyte.

Figure S4. Comparison of CV profiles for the cell with and without 0.5 wt% BOD.

Figure S5. The Li-S battery performance without BOD electrolyte. (a) CV curves at different scanning rates; (b) Linear fits of the peak current and Li⁺ diffusion coefficient calculated by the Randles-Sevcik equation.

Figure S6. CV profiles in Li_2S_6 symmetric cells with/without BOD at 30 mV s⁻¹.

Figure S7. Internal resistance of the cell with and without 0.5 wt% BOD during discharge.

Figure S8. (a-b) SEM photographs of the Li anode after 200 cycles at 0.2 C and -20 °C; (c-d) SEM images of the Li anode after 140 cycles at 0.2 C with an E/S ratio of 8 μ L mg⁻¹ and a sulfur loading of 5 mg cm⁻².

Figure S9 EIS spectra of the bare Li anode in the Li||Li symmetric cells without BOD for plating 0, 2, 4, 6, and 8 h, respectively, under a current density of 1 mA cm⁻².

Figure S10. Optical images of Li sheets in the electrolyte with and without 0.5 wt%

BOD for 48 h.

Figure S11. The comparison of Li 1s XPS spectra of Li sheets immersed in blank and

0.5 wt% BOD electrolyte for 48 h and after 200 cycles in 0.5 wt% BOD electrolyte.

Figure S12. Li 1s XPS spectrum of the cell with 0.5 wt% BOD electrolyte after 200 cycles.

Figure S13. Raman spectra of 0.5% BOD in various of Li_2S_n (n=1, 4, 5, 6, 8) with a

volume ratio of 1:1.

Figure S14. Raman spectra of the bare Li_2S_n (n=1, 4, 5, 6, 8) solution.

Figure S15. *In-situ* Raman spectra of the cell with (a) blank, (b) 0.5 wt%, and (c) 5 wt% BOD electrolyte. (d) Raman spectra of 0.5 wt% BOD in Li_2S_n (n=1, 4, 5, 6, 8) solution for studying the solvation structure.

Figure S16. Rate performances (0.2, 0.5, 1, 2C) of the Li-S batteries with standard and 0.1 wt%, 0.5 wt%, and 1 wt% BOD electrolyte.

Figure S17. Voltage-capacity curves of the Li-S batteries with blank, 0.1 wt%, 0.5 wt%, and 1 wt% BOD at 0.2 C.

Figure S18. Chronoamperometric responses of Li||Li symmetric cells with a 10 mV bias voltage at 25 °C and -20 °C.

Figure S19. SEM images of the thick sulfur cathode with sulfur loading of 5mg cm⁻².