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                          Figure S1. The Brillouin zone of pure ZnSb

                                        

Figure S2. Hall plot of Zn1-xSb (x = 0, 0.01, 0.03, 0.06) vs. nH and μH.
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Figure S4. The supercell of 2 x 2 x 1 for (a) ZnSb and (b) Zn0.94Sb. Here, plus sign stands for 
the charge gain. Blue atoms represent the nearest Sb atoms and green is the nearest Zn atom 
to the vacancy.   

Figure S3. Theoretical DFT studies of (a) S vs. n  and (b)  vs. n.
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Figure S5 (a) & (b) Electronic structure of Zn (s+p) and Sb (s+p) orbitals shown in E vs. k   
diagram, (c) Hole density mapping of  orthorhombic ZnSb and  (d) Hole density map of 
Zn0.94Sb

Figure S6. Temperature-dependent (a) Specific heat capacity; (b) Thermal diffusivity and (c) Lorentz 
number for Zn1-xSb (x =  0, 0.01, 0.03 and 0.06).

The Lorenz number was calculated using simple parabolic band model with function 
temperature using following relation, 

𝐿 = (𝑘𝐵

𝑒 )2·{3𝐹0(𝜂)𝐹2(𝜂) ‒ 4𝐹1(𝜂)2

𝐹0(𝜂)2 }
Here,  for Boltzmann constant, the reduced chemical potential and charge of 𝜅𝐵 , 𝜂 𝑎𝑛𝑑 𝑒

an electron respectively. Specifically this model assumes that the carriers are scattered by 
acoustic phonons.  The L values can be measured using the Seebeck coefficient values and the 
relation between the reduced chemical potential and S is given below 

𝑆 = (𝑘𝐵

𝑒 ){2𝐹1(𝜂)

𝐹1(𝜂)
‒ 𝜂}
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𝐹𝑖(𝜂) =
∞

∫
0

𝜉𝑖𝑑𝜉

1 + 𝑒𝜉 ‒ 𝜂

 Where  fermi integrals of ith order and  denotes the reduced carrier energy.  Here 𝐹𝑖(𝜂) 𝜉
Figure S6 (c) , depicts the Lorentz number as a function of temperature as calculated from κele 

values.  



Figure S7. The calculated phonon group velocities (a) ZnSb and (b) Zn0.94Sb as a function of 

phonon frequency.



The calculation for ZTeng, PFeng, Pd, and ηmax 

The figure of merit, zT, of thermoelectric material is an indefinite indicator for determining the 
conventional thermoelectric conversion efficiency (ηmax) because it assumes temperature-independent 
behavior of S, ρ = 1/σ, and κtotal in the calculations.   H. S. Kim et al.1 recently proposed the term ZTeng, 
a quantitative measure that assesses the effectiveness of thermoelectric (TE) conversion. ZTeng takes 
into account the temperature-dependent properties of TE materials.  This metric is especially valuable 
for precisely evaluating the thermoelectric efficiency of material when there is a substantial temperature 
difference between the cold and hot side of the thermoelectric legs.   Here, (PF)eng, (ZT)eng, Pd, and ηmax 
are calculated using the following relations,

(i)
𝑧𝑇𝑎𝑣𝑔 =

𝑆2(𝑇)
𝜌(𝑇)
𝜅(𝑇)

∗ 𝑇

(ii) in W/mK2

(〖𝑃𝐹)〗𝑒𝑛𝑔 =
(𝑇𝐻

∫
𝑇𝐶

𝑆(𝑇)𝑑𝑇)2

𝑇𝐻

∫
𝑇𝐶

𝜌(𝑇)𝑑𝑇

∆𝑇 

Where ρ(T) represents the resistivity, S(T) represents the Seebeck coefficient, κ(T) represents the total 
thermal conductivity, ηC represents the Carnot efficiency, and α represents a dimensionless intensity 
component of the Thomson coefficient. 

(iii)

(𝑍𝑇)𝑒𝑛𝑔 =
(〖𝑃𝐹)〗𝑒𝑛𝑔

𝑇𝐻

∫
𝑇𝐶

𝜅(𝑇)𝑑𝑇

(iv)  in W/cm2;   
𝑃𝑑 =

(𝑃𝐹)𝑒𝑛𝑔Δ𝑇

𝐿
      

𝑚𝑜𝑝𝑡

(1 + 𝑚𝑜𝑝𝑡)2 𝑚𝑜𝑝𝑡 = 1 + (𝑍𝑇)𝑒𝑛𝑔 (𝛼
𝜂𝐶

‒ 1
2)

Where (PF)eng and mopt are the engineering power factor and optimum ratio of external electrical load 
(RL) and internal resistance (Rint).

       (iv)  ;   and 

𝜂𝑚𝑎𝑥 = 𝜂𝐶.
1 + (𝑍𝑇)𝑒𝑛𝑔 (𝛼

𝜂𝐶
‒ 1

2) ‒ 1

𝛼 1 + (𝑍𝑇)𝑒𝑛𝑔 (𝛼
𝜂𝐶

‒ 1
2) ‒ 𝜂𝐶 𝜂𝐶 =

∆𝑇
𝑇𝐻

 

𝛼 =  
𝑆(𝑇𝐻)∆𝑇

𝑇𝐻

∫
𝑇𝐶

𝑆(𝑇)𝑑𝑇
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