Supporting Information

High thermoelectric performance in *p*-type ZnSb upon Zn vacancies: An

experimental and theoretical study

Jothilal Palraj,^a Muhammad Sajjad,^b Manojkumar Moorthy,^a Madhuvathani Saminathan,^a

Bhuvanesh Srinivasan,^{d,e} Nirpendra Singh,^b Sashikanth Patole,^b and Kiran Mangalampalli^a*

Suresh Perumal^{f*}

^a Laboratory for Energy and Advanced Devices (LEAD), Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603 203, Tamilnadu, India.

^bDepartment of Physics, Khalifa University of Science and Technology, Abhu Dhabi, UAE. ^dDepartment of Metallurgical and Materials Engineering, Indian Institute of Technology (IIT)-Madras, Chennai 600 036, Tamilnadu, India

^eCeramic Technologies Group-Center of Excellence in Materials and Manufacturing for Futuristic Mobility, Indian Institute of Technology (IIT)-Madras, Chennai, 600 036, Tamilnadu, India

^fLaboratory for Energy and Advanced Devices (LEAD), Department of Materials Science and Metallurgical Engineering, Indian Institute of Technology Hyderabad (IITH), Kandi, Sangareddy 502 285, Telangana, India

*Corresponding author E-mail:suresh@msme.iith.ac.in and kiranmak@srmist.edu.in

Figure S1. The Brillouin zone of pure ZnSb

Figure S2. Hall plot of $Zn_{1-x}Sb$ (x = 0, 0.01, 0.03, 0.06) vs. n_H and μ_H .

Figure S3. Theoretical DFT studies of (a) S vs. n and (b) σ vs. n.

Figure S4. The supercell of 2 x 2 x 1 for (a) ZnSb and (b) $Zn_{0.94}$ Sb. Here, plus sign stands for the charge gain. Blue atoms represent the nearest Sb atoms and green is the nearest Zn atom to the vacancy.

Figure S5 (a) & (b) Electronic structure of Zn (s+p) and Sb (s+p) orbitals shown in E vs. k diagram, (c) Hole density mapping of orthorhombic ZnSb and (d) Hole density map of Zn_{0.94}Sb

Figure S6. Temperature-dependent (a) Specific heat capacity; (b) Thermal diffusivity and (c) Lorentz number for $Zn_{1-x}Sb$ (x = 0, 0.01, 0.03 and 0.06).

The Lorenz number was calculated using simple parabolic band model with function temperature using following relation,

$$L = \left(\frac{k_B}{e}\right)^2 \cdot \left\{\frac{3F_0(\eta)F_2(\eta) - 4F_1(\eta)^2}{F_0(\eta)^2}\right\}$$

Here, κ_B , η and e for Boltzmann constant, the reduced chemical potential and charge of an electron respectively. Specifically this model assumes that the carriers are scattered by acoustic phonons. The L values can be measured using the Seebeck coefficient values and the relation between the reduced chemical potential and S is given below

$$S = \left(\frac{k_B}{e}\right) \left\{\frac{2F_1(\eta)}{F_1(\eta)} - \eta\right\}$$

$$F_i(\eta) = \int_0^\infty \frac{\xi^i d\xi}{1 + e^{\xi - \eta}}$$

Where $F_i(\eta)$ fermi integrals of *i*th order and ξ denotes the reduced carrier energy. Here Figure S6 (c), depicts the Lorentz number as a function of temperature as calculated from κ_{ele} values.

Figure S7. The calculated phonon group velocities (a) ZnSb and (b) $Zn_{0.94}Sb$ as a function of phonon frequency.

The calculation for ZT_{eng} , PF_{eng} , P_d , and η_{max}

The figure of merit, zT, of thermoelectric material is an indefinite indicator for determining the conventional thermoelectric conversion efficiency (η_{max}) because it assumes temperature-independent behavior of S, $\rho = 1/\sigma$, and κ_{total} in the calculations. H. S. Kim et al.¹ recently proposed the term ZT_{eng}, a quantitative measure that assesses the effectiveness of thermoelectric (TE) conversion. ZT_{eng} takes into account the temperature-dependent properties of TE materials. This metric is especially valuable for precisely evaluating the thermoelectric efficiency of material when there is a substantial temperature difference between the cold and hot side of the thermoelectric legs. Here, (PF)_{eng}, (ZT)_{eng}, P_d, and η_{max} are calculated using the following relations,

(i)
$$zT_{avg} = \frac{\frac{S^2(T)}{\rho(T)}}{\kappa(T)} * T$$
$$([PF)]_{eng} = \frac{\left(\int_{T_C}^{T_H} S(T) dT\right)^2}{\int_{T_C}^{T_H} \rho(T) dT} \Delta T$$
(ii)
(ii)
$$in W/mK^2$$

Where $\rho(T)$ represents the resistivity, S(T) represents the Seebeck coefficient, $\kappa(T)$ represents the total thermal conductivity, η_C represents the Carnot efficiency, and α represents a dimensionless intensity component of the Thomson coefficient.

$$(ZT)_{eng} = \frac{\left([PF]\right)_{eng}}{\int_{T_C}^{T_H} \kappa(T) dT}$$

(iii)

(iv)
$$P_{d} = \frac{(PF)_{eng}\Delta T}{L} \quad \frac{m_{opt}}{(1+m_{opt})^{2}} \text{ in W/cm}^{2}; \quad m_{opt} = \sqrt{1+(ZT)_{eng}\left(\frac{\alpha}{\eta_{c}}-\frac{1}{2}\right)}$$

Where $(PF)_{eng}$ and m_{opt} are the engineering power factor and optimum ratio of external electrical load (R_L) and internal resistance (R_{int}) .

$$\eta_{max} = \eta_{C} \cdot \frac{\sqrt{1 + (ZT)_{eng} \left(\frac{\alpha}{\eta_{C}} - \frac{1}{2}\right)} - 1}{\alpha \sqrt{1 + (ZT)_{eng} \left(\frac{\alpha}{\eta_{C}} - \frac{1}{2}\right)} - \eta_{C}}; \eta_{C} = \frac{\Delta T}{T_{H}} \text{ and } \int_{T_{C}}^{T_{H}} S(T) dT$$
(iv)

References:

(1) H. S. Kim, W. Liu, G. Chen, C.-W. Chu, and Z. Ren, Relationship between

thermoelectric figure of merit and energy conversion efficiency, Proceedings of the National Academy of Sciences, 2015, 112, 8205–8210.