Supplementary Information

Generalizable, Tunable Control of Divalent Cation Solvation Structure via Mixed Anion Contact Ion Pair Formation

Sydney N. Lavan^{1,2}, Stefan Illic^{1,2}, Shashwat Viswanath^{1,2}, Akash Jain^{1,2}, Rajeev S. Assary^{1,2} and Justin G. Connell^{1,2*}

¹ Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439, USA

² Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA

* Email: jconnell@anl.gov

Figure S1. (a) ZnTFSI₂ concentration dependence Raman spectra of the TFSI⁻ breathing mode. (b) Higher concentration of 1M ZnTFSI₂ in black compared to 1:1 ratio of ZnTFSI₂:ZnCl₂ in green. (c) Higher concentration of 1M MgTFSI₂ in black compared to 1:1 ratio of MgTFSI₂:MgCl₂ in blue.

Monodentate Coordinated M-TFSI

Bidentate Coordinated M-TFSI

Figure S2. DFT modeled structures of metal cation (M=Zn, Mg and Cu) coordinated to TFSI in a mono- or bidentate configuration with an explicit G2 molecule. $M(TFSI)^{mono}(G2)$ and $M(TFSI)^{bi}(G2)$

Figure S3. Optimized morphologies of the 6 DFT structures studied. Zn is top row a-c and Mg is bottom row d-f.

Table S1	. DFT	computed	free energy	of the s	six (1	to 6)) complexation reactions.
----------	-------	----------	-------------	----------	--------	-------	---------------------------

Reactants	Products	<u>Calculated</u> ΔG
1. Mg + 2G2 + TFSI	Mg-TFSI + 2G2	-0.09 eV
2. $2 \text{ Mg} + 2\text{G2} + 2\text{Cl} + 2\text{TFSI}$	2Mg-TFSI-Cl + 2G2	-1.28 eV
3. Zn + 2G2 +TFSI	Zn-TFSI + 2G2	-0.04 eV
4. 2 Zn + 2G2 +2Cl + 2TFSI	2Zn-TFSI-Cl + 2G2	-1.61 eV
5. $Cu + 2G2 + TFSI$	Cu-TFSI ⁺ + 2G2	-0.18 eV
6. $2Cu + 2G2 + 2Cl + 2TFSI$	2Cu-TFSI-Cl+2G2	-1.75 eV

For the calculated free energies, we divided the overall value by two for reactions 2, 4 and 6 to enable direct comparison with the energies calculated in reactions 1, 3 and 5.

Figure S4. DFT calculated Raman spectra for Cu(TFSI)^{mono}(G2) and Cu(TFSI)^{mono}(Cl)(G2).

nom nung of experimental ruman data.									
Solvation	0.1M	0.1M ZnTFSI ₂ +							
Structure	ZnTFSI ₂	0.025M ZnCl ₂	0.05M ZnCl ₂	0.1M ZnCl ₂	0.2M ZnCl ₂				
Zn(TFSI) ^{mono} (Cl)	-	13%	16%	40%	41%				
"Free" TFSI-	95%	82%	79%	54%	56%				
Zn(TFSI) ^{mono}	2%	3%	3%	3%	3%				
Zn(TFSI) ^{bi}	3%	2%	2%	3%	-				

Table S2. Relative percent populations of the different TFSI⁻/halide ratios solvation environments for zinc determined from fitting of experimental Raman data.

Table	S3 .	Relative	percent	populations	of the	different	TFSI-/halide	ratios	solvation	environments	for	magnesium
detern	nine	d from fit	ting of e	xperimental	Ramar	1 data.						

Solvation	0.1M	0.1M MgTFSI ₂	0.1M MgTFSI ₂	0.1M MgTFSI ₂	0.1M MgTFSI ₂
Structure	MgTFSI ₂	+ 0.025M MgCl ₂	+ 0.05M MgCl ₂	+ 0.1M MgCl ₂	+ 0.2M MgCl ₂
Mg(TFSI) ^{mono} (Cl)	-	20%	43%	51%	61%
"Free" TFSI-	89%	71%	49%	43%	36%
Mg(TFSI) ^{mono}	9%	7%	6%	3%	1%
Mg(TFSI) ^{bi}	2%	2%	2%	2%	2%

Solvation	0.1M	0.1M CaTFSI ₂ +			
Structure	CaTFSI ₂	0.025M CaCl ₂	0.05M CaCl ₂	0.1M CaCl ₂	0.2M CaCl ₂
Ca(TFSI) ^{mono} (Cl)	-	38%	36%	19%	19%
"Free" TFSI-	48%	33%	36%	56%	56%
Ca(TFSI) ^{mono}	4%	7%	6%	2%	4%
Ca(TFSI) ^{CIP}	31%	13%	15%	14%	13%
Ca(TFSI) ^{bi}	17%	8%	8%	9%	8%

Table S4. Relative percent populations of the different TFSI-/halide ratios solvation environments for calcium determined from fitting of experimental Raman data.

Figure S5. Experimental Raman spectra of Mg-TFSI:Cl ratio. Highlighting the evolution of the mixed contact ion pair.