Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Electronic Supplementary Information (ESI)

Surface Reconstruction Layer Boosting Interfacial Stability of LiCoO₂/Li₆PS₅Cl in

Bulk All-Solid-State Li Batteries

Shiliang Zheng,^{a,†} Zengzhu Li,^{a,†} Zhiwe He,^{a,†} Wenguang Zhao,^{b,†} Chenyu Liu,^{a,*} Zhan Lin,^a Zengqing Zhuo^{c,*} and Bingkai Zhang^{a,*}

^a Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, School of Chemical

Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

^b School of Advanced Materials, Peking University, Shenzhen Graduate School, Shenzhen, China.

^c Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.

† All authors contributed equally.

E-mail addresses: liucy@gdut.edu.cn; zhuozzhuo@lbl.gov; zhangbk@gdut.edu.cn

Experimental details Preparation of the Materials

Xiamen Tungsten Co., Ltd (XTC) supplied the monocrystal LiCoO₂. Indium foils (0.05 mm in thickness) were purchased from Tengfeng Metal Materials Technology Co., Ltd. Solid electrolytes (Li₆PS₅Cl (LPSCl)) were purchased from Hefei Kejing Materials Technology Co., Ltd. The reducing gas (CH₄) was purchased from Guangzhou Danoutong Trading Co., Ltd. Lithium (99.99% purity, 50 mm in thickness) was brought from China Energy Lithium Co., Ltd.

Preparation of SR(CH₄)-LCO

The treatment of P-LCO is carried out in a quartz tube furnace. A multi-step thermal method was used to precisely regulate the SRL layer over LCO. The N₂ flux was used as a protective gas during the temperature increase. When the temperature reached 650 °C(5°C/min), the gas was converted to CH₄, and the reduction reaction between CH₄ and LCO was initiated. Following the chilling process, the gas is converted to N₂ protection gas until it reaches room temperature. By adjusting the sintering time, a series of SR-LCO oxides (designated as SR-LCO-X min, where X = 5 and 10 minutes) with various GSIRR reaction times with CH₄ gas were produced.

Electrochemical tests

Using the battery testing system (LAND, Wuhan) at room temperature (25 °C), the galvanostatic discharge/charge tests of ASSLBs with LCO cathodes were carried out at a potential range of 2.6-4.3 V vs. Li+/Li, where 1C was defined as 120 mA g-1. For high voltage test conditions, a potential range of 2.6-4.5 V (or 2.6-4.6 V) vs. Li+/Li was applied, and 1C was defined as 120 mA g-1. The GITT curves of ASSLBs were performed with a 20-minute discharge at 0.1C followed by a 2-hour relaxation. Electrochemical impedance spectroscopy (EIS) of ASSLBs was carried out at the Autolab working station (Wantong, Switzerland) with a frequency range of 3500 Hz to 0.01 Hz and an AC 2/11

perturbation signal of 5 mV.

Materials characterization

Powder X-ray diffraction (XRD) was performed using a Rigaku Ultima IV with a Cu K radiation source and samples were scanned at a 20 range of 5 to 90° at a scan speed of 1° min⁻¹. Use a scanning electron microscope (SEM, TESCAN MIRA4) to observe the morphology of cathodes before and after reduction. A high-resolution transmission electron microscope (HRTEM) was used to study the CoO/Li₂CO₃ SRL layer on the surface of LCO at an accelerating voltage of roughly 200 kV. Before TEM observation, thin sections of the SR(CH₄)-LCO-5min particles were prepared using the Focused Ion Beam (FIB) technique. Surface components of samples were analyzed using a PHI-5000versaprobeIII electron spectrometer (X-ray photoelectron spectroscopy, XPS), and the binding energies reported herein were corrected for the C-C/C-H signal at 284.8 eV. As an X-ray source, AI K α monochromatized radiation (hv = 1486.6 eV) was used. The surface of the specimen is sputtered by inert gas ion bombardment with a sputter rate of 15 nm (SiO₂ as standard reference) for each time, and spectra are then collected from the center of an etched area.

Figure S1 A schematic illustration showing the GSIRR process and the formation of CoO/Li_2CO_3 layer on the surface of the particle.

Figure S2 Raman analysis of SR(CH₄)-LCO-5min and P-LCO. The blue trace represents SR(CH₄)-LCO-5min sample. The grey trace represents P-LCO sample.

Figure S3 The Nyquist plots of P-LCO, SR(CH₄)-5 min LCO and SR(CH₄)-10 min LCO all-solid-state lithium-ion batteries after 10 cycles at 0.2 C.

Figure S4 The fitting results of Nyquist plots for batteries.

Figure S5 GITT discharge curves of P-LCO and SR(CH₄)-LCO-5 min.

Figure S6 Ion diffusion coefficient log D and Polarization curves of SR(CH₄)- LCO-5 min and P-LCO.

Figure S7 GITT discharge curves of P-LCO and SR(CH₄)-LCO-10 min.

Figure S8 Ion diffusion coefficient log D and Polarization curves of SR(CH₄)-LCO-10 min and P-LCO.

Figure S9 XPS spectra for P-LCO and SR-LCO. (a-b) S 2*p* and (c-d) P 2*p* XPS spectra of P-LCO/LPSCl interface and SR-LCO-5min/LPSCl interface after 10 cycles at 0.2C.

Figure S10 (a-b) The SEM images of P-LCO and SR(CH4)-LCO after 10 cycles at 0.2C.

Figure S11 The performance of ASSLBs with SR(CH₄)-LCO-5min and P-LCO at 0.5 C under 50°C.

	Design in ASSLBs	T (℃)	Voltage Range (V)	Rate	Initial discharge capacity (mAh g ⁻¹)	Capacity retention (%)	Cycles
This	CH4-LCO-5min LPSCl In-Li	25	2.6-4.5	0.5C	149.8	89.38	200
work	CH ₄ -LCO-5min LPSCl In-Li	25	2.6-4.6	0.5C	168.6	82.68	158
1	LiNbO ₃ @LCO LGPS In-Li	25	2.5-4.2	1C	115	81.73	50
2	Al2O3/LiAlO2@NCM LPSCl In-	25	2.6-4.3	0.25C	138.9	54	100
	Li						
3	Li ₃ BO ₃ @LCO LLZTO Li	25	2.7-4.2	0.05C	136	76	100
4	Li2CoTi3O8@LCO LGPS In-Li	30	2.1-4.5	0.2C	180	73.3	100
5	LNO@NCM811 LPSCl In-Li	30	2.7-4.38	0.5C	162	77.9	50

 Table S1 Detailed comparison of the electrochemical performance of different coating in ASSLBs.

References

- 1. X. Sun, Y. Yamada, S. Hori, Y. Li, K. Suzuki, M. Hirayama and R. Kanno, J. Mater. Chem. A,2021, 9, 17905–17912.
- 2. R. S. Negi, Y. Yusim, R. Pan, S. Ahmed, K. Volz, R. Takata, F. Schmidt, A. Henss and M. T. Elm, Adv Materials Inter, 2022, 9, 2101428.
- 3. Y. Zhang, Z. Tang, Y. Mei, Y. Xiao, X. Xiang, D. Luo and J. Deng, Applied Surface Science, 2023, 630, 157488.
- C.-W. Wang, F.-C. Ren, Y. Zhou, P.-F. Yan, X.-D. Zhou, S.-J. Zhang, W. Liu, W.-D. Zhang, M.-H. Zou, L.-Y. Zeng, X.-Y. Yao, L. Huang, J.-T. Li and S.-G. Sun, *Energy Environ. Sci.*, 2021, 14, 437–450.
- 5. X. Li, Q. Sun, Z. Wang, D. Song, H. Zhang, X. Shi, C. Li, L. Zhang and L. Zhu, *Journal of Power Sources*, 2020, **456**, 227997.