Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

1	Supplementary Material						
2	for						
3	Correction and new understanding of reactivity for illuminated						
4	tungsten trioxide under dark: Antecedents and consequences of						
5	photo-storage electrons triggering Fenton reactions						
6	Hao Huang, Hui-Long Wang*, Wen-Feng Jiang*						
7	School of Chemistry, Dalian University of Technology, Dalian 116023, China						
8							
9							
10							
11							
12	Corresponding author: <u>hlwang@dlut.edu.cn (HL. Wang)</u>						
13	dlutjiangwf@163.com (WF. Jiang)						
14							
15							
16							
17							
18	Number of pages: 16						
19	Number of figures: 11						
20	Number of tables: 3						

21	Contents
22	1. Experimental procedure3-
23	Text S 1.1. Quantitative experiments on stored electrons in LP-t min samples3-
24	Text S 1.2. The oxidation experiments of I ⁻ for different catalysts3-
25	Text S 1.3. Theoretical calculation details4-
26	2. Results and Discussion5-
27	Figure S1. SEM image of h-WO ₃ •0.46H ₂ O5-
28	Figure S2. The refined crystal structure unit of h-WO ₃ •0.46H ₂ O6-
29	Figure S3. Photographs of different illuminated h-WO ₃ •0.46H ₂ O samples6-
30	Figure S4. Reflectance of different illuminated h-WO ₃ •0.46H ₂ O samples6-
31	Figure S5. Reflectance of different illuminated h-WO ₃ •0.46H ₂ O samples7-
32	Figure S6. UV-vis spectra and standard curves of KMnO ₄ solution7-
33	Figure S7. Schematic representation of the reduction process of MnO ₄ 7-
34	Figure S8. TOC removal for DNBP degradation by different reaction systems8-
35	Figure S9. The TOC removal and trapping experiments of reactive species through
36	DNBP degradation process for LP-80 min through different cycle times
37	Figure S10. XRD pattern of the sample before and after DFR process9-
38	Figure S11. Mass spectra (MS) of intermediates during the DFR process10-
39	Table S1. Different round-the-clock photocatalysts based on stored electrons in WO_3
40	for organic contaminants degradation under dark condition12-
41	Table S2. Results of the refinement data of h-WO ₃ ·0.46H ₂ O in the Space Group
42	<i>P6/mmm</i> 13-
43	Table S3. Intermediates of DNBP in illuminated $h-WO_3 \cdot 0.46H_2O/H_2O_2$ system-13-
44	2. Reference15-
45	
46	
47	
48	
49	

50 1. Experimental Procedures

51 1.1. Quantitative experiments on stored electrons in LP-t min 52 samples.

53 KMnO₄ as a selective probe reagent for the stored electrons (W(V)) trapping through
54 Eq. (1) or (2):

55
$$MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$$
 (1)

56
$$MnO_4^- + 5W(V) + 8H^+ \rightarrow Mn^{2+} + 5W(VI) + 4H_2O$$
 (2)

57 Firstly, KMnO₄ solution with different concentrations (5, 50, 100, 120, 150, 200 ppm) were prepared at pH of 1 (The solvent was the 0.05 M/L H₂SO₄ solution). Then, the 58 reduction experiments of KMnO₄ were carried out following certain steps: 20 mg of 59 LP-t min was added into 30 ml KMnO₄ solution with certain concentration under 60 stirring conditions in dark. After 2 h, 3 mL of suspension were withdrawn, centrifuged 61 and the supernatant was analyzed for evolution in concentration of KMnO4 62 spectrophotometrically at λ_{max} of 525 nm. Finally, based on the consumption amount of 63 KMnO₄, the content (mmol/g) of W(V) in LP-t min sample is calculated to obtain the 64 concentration (mmol/g) of stored electrons in the catalyst. 65

66 1.2. The oxidation experiments of I⁻ for different catalysts.

67 I₃⁻ as a selective probe reagent for existence of reactive oxygen species (H₂O₂, •OH,
68 •O₂⁻, O₂) through Eq. (3) and (4)

69 I⁻ + reactive oxygen species (H₂O₂, •OH, •O₂⁻, O₂) + H⁺
$$\rightarrow$$
 I₂ + H₂O (3)

$$I_2 + I^- \to I_3^- \tag{4}$$

150 µL of 10 wt. % H₂O₂ was poured into 30 ml deionized water under magnetic stirring. After 10 min, 30 mg catalyst was added into above solution. After 1 h of continuous stirring, 5 mL of suspension were withdrawn, centrifuged and the supernatant was obtained. Subsequently, 10 µL of $(NH_4)_2MoO_4$ solution with concentration of 10 µM/L and 0.5 ml of KI solution with concentration of 100 mM/L were added into the supernatant. The solution was stirred for 5 minutes and then analyzed for evolution in concentration of I₃⁻ spectrophotometrically at λ (λ_1 = 287 nm, λ_2 = 350 nm).

79 1.3. Theoretical calculation details.

In this work, the adsorption process of H_2O_2 on the (001) surface of h-WO₃ hydrate were studied in the CASTEP module. The Perdew-Burke-Ernzerhof (PBE) functional based on the generalized-gradient approximation (GGA) was used to described the exchange and correlation interactions between atoms. The cutoff energy of the plane wave was 300 eV and the tolerance for accepting convergence of the total energy per atom was 10^{-5} eV atom⁻¹. Moreover, the Brillouin zone was sampled using a suitable Γ point. The adsorption binding energy E_{ads} was calculated according to Eq. (5).

$$E_{ads} = E_{total} - E_{adsorbate} - E_{adsorbent}$$
(5)

88 where E_{total} , $E_{adsorbate}$ and $E_{adsorbent}$ correspond to the total energies of the system, 89 antibiotics, and adsorbents, respectively.

90 Molecular dynamics (MD) simulations were used to study the adsorption behavior of 91 H_2O_2 molecule on the (001) surface of h-WO₃ hydrate. The computational model was 92 composed by the h-WO₃ hydrate (3 ×3) super cell, H_2O_2 solution slab and vacuum slab 93 (30 Å). Before calculation, the constructed system was geometrically optimized. The 94 condensed phases were simulated using the force field UNIVERSAL. The Ewald 95 summation technique was used to set bonded and unbonded terms as atom-based 96 summations. The Nasal thermostat was used to perform constant temperature molecular 97 dynamics simulations at 298 ± 10 K with a time step of 1.0 fs and a simulation time of 98 1000 ps.

99 Quantum chemical calculations were performed using Gaussian 09 program with DFT 100 algorithm to optimize the structure of DNBP at the B3LYP/6-31G (d, p) level. The 101 wave function analysis was carried out using the Multiwfn program to obtain the 102 frontier molecular orbitals (the highest occupied molecular orbits (HOMO), the lowest 103 unoccupied molecular orbits (LUMO), surface electrostatic potential (ESP)) and Fukui 104 indices of DNBP molecule.

105 2. Results and Discussion

106

107 **Figure S1.** SEM image of h-WO₃•0.46H₂O.

- 112 plane and (b) *xz* plane.

118 Figure S4. Reflectance spectra of different illuminated h-WO₃•0.46H₂O samples.

123 **Figure S6**. (a) UV–vis absorbance spectra of KMnO₄ solution with different 124 concentration and (b) standard curve based on the absorbance at $\lambda_{max} = 525$ nm.

125

126 **Figure S7**. Schematic representation of the reduction process of MnO_4 ⁻ among 127 illuminated .h-WO₃•0.46H₂O.

128

129 Figure S8. TOC removal for DNBP degradation by different reaction systems.

Figure S9. (a) The TOC removal and (b) trapping experiments of reactive speciesthrough DNBP degradation process for LP-80 min through different cycle times.

135

136 Figure S10. The XRD pattern of illuminated h-WO₃•0.46H₂O before and after 10 times

137 of DFR process.

- 139 Figure S11. Mass spectra (MS) of intermediates during the process of DNBP
- 140 degradation among illuminated $h-WO_3 \cdot 0.46H_2O/H_2O_2$ system.

Photocatalysts	Pollutants	Light source	Illumination reaction	Dark reaction	Active species in the	References
			time (charging)	time	dark reaction	
				(discharging)		
Spray dried TiO ₂ /WO ₃	Methylene	UV	40 min	30 min	•OH	1
heterostructure	blue					
WO ₃ /TiO ₂ hollow	Methyl	Vis	40 min	40 min	•OH	2
microsphere composites	orange					
Pt: TiO ₂ /WO ₃ photocatalyst	Methanol	Vis	2 h	6 h	•OH	3
Dual-phase TiO ₂ /WO ₃	Methanol	stimulated solar light	2 h	6 h	•O ₂ -	4
$WO_3/g-C_3N_4$ composite	Rhodamine B	Vis	1 h	8 h	•OH	5
Pt-TiO ₂ /WO ₃ hybrid material	Methylene blue	UV/Vis	30 min	60 min	•OH	6
n-MoS ₂ /p-WO ₃ based diode	Methylene	-	-	-	•OH	7
catalyst Mg-ZnO/WO ₃ QDs/GO	Biue Rhodamine B	UV/Vis	6 h	2 h	•O ₂ -	8

Table S1. Different round-the-clock photocatalysts based on stored electrons in WO₃ for organic contaminants degradation under dark condition.

	Atom	Х	У	Z	Occupancy	В	Site	Symmetry
1	W1	0.50000	0.00000	0.00000	1.000	1.381	3f	mmm
2	01	0.38380	0.19190	0.00000	1.000	1.164	61	mm2
3	O2	0.50000	0.00000	0.50000	1.000	1.858	3g	mmm
4	O3	0.00000	0.00000	0.00000	0.402	2.500	1a	6/mmm
5	O4	0.13990	0.13990	0.20979	0.027	4.000	12n	m

Table S2. Results of the refinement data of h-WO₃·0.46H₂O in the Space Group P6/mmm.

Table S3. Intermediates of DNBP in illuminated h-WO₃•0.46H₂O/H₂O₂ system.

The series number of intermediates	Formula	m/z	Structure	Retention time (min)
1	$C_7H_4N_2O_6$	212		15.92
2	$C_7H_4N_2O_7$	228		17.12
3	$C_6H_4N_2O_6$	200		18.11
4	$C_6H_4N_2O_8$	232	HO O O O O O O O O O O O O O O O O O O	14.61
5	C ₁₀ H ₁₃ NO ₃	195	HO LO NO2	19.67

6	C7H5NO4	167		12.98
7	C ₇ H ₆ O ₃	138	ноон	12.03
8	C7H4O3	136	H N N	10.75
9	C4H4O4	116	но	13.28
10	C ₃ H ₄ O ₄	104	но он	16.34
11	C ₁₀ H ₁₄ O	150	HO	9.92
12	C7H6O2	122	HO	11.37
13	C ₆ H ₆ O ₄	142	₽ J S S S S S S S S S S S S S S S S S S	8.04

3. Reference

[1] H. Khan, M. G. Rigamonti, G. S. Patience, D. C. Boffito, Spray dried TiO₂/WO₃ heterostructure for photocatalytic applications with residual activity in the dark. *Appl. Catal. B: Environ.*, 2018, **226**, 311-323.

[2] Y. Li, L. Chen, Y. Guo, X. Sun, Y. Wei, Preparation and characterization of WO₃/TiO₂ hollow microsphere composites with catalytic activity in dark. *Chem. Eng. J.*, 2012, **181-182**, 734-739.

[3] M. Mokhtarifar, D. T. Nguyen, M. Sakar, M. Pedeferri, M. Asa, R. Kaveh, M. V. Diamanti, T.-O. Do, Mechanistic insights into photogenerated electrons store-and-discharge in hydrogenated glucose template synthesized Pt: TiO₂/WO₃ photocatalyst for the round-the-clock decomposition of methanol. *Mater. Res. Bull.*, 2021, **137**, 111203.

[4] M. Mokhtarifar, D. T. Nguyen, M. V. Diamanti, R. Kaveh, M. Asa, M. Sakar, M. Pedeferri, T.-O. Do, Fabrication of dual-phase TiO₂/WO₃ with post-illumination photocatalytic memory. *New. J. Chem.*, 2020, 44, 20375-20386.

[5] J. Du, Z. Wang, Y. Li, R. Li, X. Li, K. Wang, Establishing WO₃/g-C₃N₄ Composite for "Memory" Photocatalytic Activity and Enhancement in Photocatalytic Degradation. *Catal. Let.*, 2019, **149**, 1167-1173.

[6] H. Khan, M. G. Rigamonti, D. C. Boffito, Enhanced photocatalytic activity of Pt-TiO₂/WO₃ hybrid material with energy storage ability. *Appl. Catal. B: Environ.*, 2019, 252, 77-85.

[7] W. L. Kebede, D.-H. Kuo, K. E. Ahmed, H. Abdullah, Dye degradation over the multivalent charge- and solid solution-type n-MoS₂/p-WO₃ based diode catalyst under dark condition with a self-supporting charge carrier transfer mechanism. *Adv. Powder. Technol.*, 2020, **31**, 2629-2640.

[8] H. Zhao, Q. Fang, C. Chen, Z. Chao, Y. Tsang, Y. Wu, WO₃ Quantum Dots Decorated GO/Mg-doped ZnO Composites for Enhanced Photocatalytic Activity under Nature Sunlight. *Appl. Organomet. Chem.*, 2018, **32**, e4449.