Supporting Information

Expediting hole transfer kinetics through surface state modulation of a Ru-FeOOH and FeNi(OH)_x dual-layer cocatalyst coated Zr-Fe₂O₃ photoanode for boosting photoelectrochemical water splitting

Periyasamy Anushkkaran,^a Weon-Sik Chae,^b Jungho Ryu,^{*c} Sun Hee Choi^{*d} and Jum Suk Jang^{*ae}

^aDepartment of Integrative Environmental Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54596, Republic of Korea

^bDaegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea

^cMineral Resources Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahak-ro 124, Yuseong-gu, Daejeon 34132, Republic of Korea

^dPohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea

^eDivision of Biotechnology, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan 54896, Republic of Korea

*Corresponding authors.

E-mail address: jryu@kigam.re.kr (J. Ryu), shchoi@postech.ac.kr (S. H. Choi), jangjs75@jbnu.ac.kr (J. S. Jang)

Characterizations

X-ray diffraction (XRD) measurements were carried out for the structural analysis of the grown photoanodes at the Center for University-wide Research Facilities (CURF) at Jeonbuk National University. This analysis was performed using PANalytical X'pert Pro MPD diffractometer equipped with a Cu K α radiation source (wavelength K α 1 = 1.540598 Å and K α 2 = 1.544426 Å) operated at 40 kV and 30 mA at a scan rate of 0.00835° 2 θ s⁻¹ with a 2 θ angle of 20–80°. The morphology of all samples was observed using high-resolution fieldemission scanning electron microscopy (HR FE-SEM, Hitachi SU8230, Korean Basic Science Institute) and high-resolution transmission electron microscopy (HR-TEM, CURF) observations were carried out. X-ray photoelectron spectroscopy (XPS) measurements were performed on a PHI Quantera II spectrometer using a monochromatic AlK α X-ray source (Kongju National University) and the binding energy was calibrated by the adventitious carbon peak of C 1s at 284.8 eV.

The TR-PL study was carried out using a confocal microscope (MicroTime-200, Picoquant, Germany) with a 40× objective. The lifetime measurements were performed at the Korea Basic Science Institute (KBSI), Daegu Center, Korea. A single-mode pulsed diode laser (470 nm with a pulse width of ~30 ps and an average power of ~75 μ W) was used as an excitation source. A dichroic mirror (490 DCXR, AHF), a long-pass filter (HQ500lp, AHF), a 150 μ m pinhole, and a single photon avalanche diode (PDM series, MPD) were used to collect emission from the samples. A time-correlated single-photon counting system (PicoHarp300, PicoQuant GmbH, Germany) was used to count emission photons. PL lifetime images consisted of 200×200 pixels were recorded using the time-tagged time-resolved (TTTR) data acquisition method. Exponential fitting for the obtained emission decays with a time-resolution of 8 ps was accomplished using the Symphotime-64 software (Ver. 2.2). Steady-state PL spectrum was recorded in the spectral range of 490–730 nm under 470 nm laser excitation by guiding emission photons through an optical fiber to the external spectrophotometer (F-7000, Hitachi, Japan). The time-resolved PL intensity is defined by,

$$I(t) = \sum A_i e^{-t/\tau_i}$$
(S1)

where, I(t) is the PL intensity as a function of time, A is the amplitude, τ is the PL lifetime, and *i* is the subcomponent number of lifetime (1–3). The intensity-weighted average lifetime $\langle \tau \rangle$ is defined as follows:¹

$$<\tau> = \sum A_i \tau_i^2 / \sum A_i \tau_i$$
 (S2)

Photoelectrochemical (PEC) measurements

PEC measurements were performed with an Ivium CompactStat potentiostat (Ivium Instruments, The Netherlands) in a three-electrode electrochemical cell using the prepared α -Fe₂O₃ as the working electrode, Pt wire as the counter electrode and Hg/HgO as the reference electrode. An aqueous solution of 1 M NaOH (pH = 13.6) was used as the electrolyte. Current density-potential characteristics were measured by an Ivium CompactStat potentiostat with illumination using a solar simulator with the standard global solar light (AM 1.5 G, 100 mW/cm²). The potential was calculated against the reversible hydrogen electrode (RHE) by using the following Nernst equation:

$$E_{RHE} = E_{Hg/Hg0} + 0.059pH + E_{Hg/Hg0}$$
(S3)
$$(E_{Hg/Hg0} = 0.095 V_{at} 25 {}^{0}C)$$

Current density-potential curves were obtained from 0.3 to 1.7 V vs. RHE with a scan rate of 50 mV s⁻¹. The Nyquist plots calculated from electrochemical impedance spectroscopy (EIS) were measured at 1.23 V vs. RHE over the frequency range from 3000 kHz to 0.5 Hz under a 1-sun illumination condition. The incident photon-to-current efficiency (IPCE) is measured using CS130 monochromator (Mmac-200, spectro) with 300 W Xe arc lamp at 1.23 V vs. RHE. The IPCE of as-prepared photoanodes was calculated using the following equation:²

$$IPCE (\%) = (1240 \times J_{photo}) / (I_{inc} \times \lambda) \times 100 \%$$
(S4)

where, J_{photo} is the measured photocurrent density at each corresponding wavelength (mA/cm²) at 1.23 V vs, RHE, I_{inc} is the incident monochromatic light power density of each corresponding wavelength (mW/cm²) and λ is the wavelength of monochromatic light (nm) respectively. The absorbed photon-to-current efficiency (APCE) is calculated using the following equation:³

$$APCE = \frac{IPCE}{LHE}$$
(S5)

The water splitting (H_2 and O_2 gases evolution) was measured using a specially designed PEC three-electrode reactor. Three electrodes, namely the working electrode as a photoanode, the counter electrode as Pt wire, the and reference electrode as Hg/HgO electrodes were mounted in an airtight glass reactor that contained a quartz-glass window to allow light

illumination without any obstacle. An aqueous solution of 1 M NaOH of pH 13.6 was filled in a reactor as an electrolyte, and before the reaction started, the reactor was purged with N_2 gas (99.9%) for 1.5 h to remove dissolved oxygen. The amounts of H_2 and O_2 evolved were measured using a gas chromatography (GC) system equipped with a thermal conductivity detector (GC-TCD, Agilent 7820, USA) and a 5 Å molecular sieve column under 1-sun illumination (AM 1.5G, 100 mW/cm²) condition at 1.23 V_{RHE}.

Fig. S1. XPS spectra of (a) Fe 2p, (b) C 1s and (c) Sn 3d of (i) Zr-HT, (ii) Zr-HT/Ru-FeOOH, and (iii) Zr-HT/Ru-FeOOH/FNH photoanodes.

Fig. S2. HR FE-SEM top and cross-sectional images of (a) Zr-HT and (b) Zr-HT/Ru-FeOOH photoanodes.

Fig. S3. (a) UV-Vis absorbance spectroscopy (inset: Tauc plots) and (b) LHE graphs of Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes.

The optical properties of the as-prepared photoanodes were evaluated by ultravioletvisible absorption spectra using a UV-Vis spectrophotometer (UV-2600, Shimadzu). The bandgap of the photoanode was determined from an indirect transition of the Tauc method:

$$(\alpha hv)^{1/n} = A(hv - E_g) \tag{S6}$$

1 /.

where, α is the absorption coefficient, *h* is Planck's constant, *v* is the photon frequency, *A* is a proportionality constant, E_g is the optical band gap, and *n* is an exponent that depends on the nature of the electronic transitions. Since hematite is an indirect bandgap semiconductor, the value of 1/n is 1/2.

The light harvesting efficiency (LHE; defined as the ratio of absorbed light to the incident light) of each photoanode can be calculated from the UV-Vis absorbance spectra:⁴

.....

$$LHE = 1 - 10^{-A(\lambda)} \tag{S7}$$

Fig. S4. EDS mapping of Zr-HT/Ru-FeOOH/FNH photoanode.

Fig. S5. (a) Low magnification TEM image, (b) Cross-sectional TEM image of Zr-HT/Ru-FeOOH/FNH photoanode and (c) respective EDS point spectra.

Fig. S6. Butler plots of Zr-HT, Zr-HT/Ru-FeOOH and Zr-HT/Ru-FeOOH/FNH photoanodes.

Fig. S7. J-V graphs of Zr-HT and Zr-HT/Ru-FeOOH with respect to (a) different Ru concentrations with 150 mM Fe and (b) various Fe concentrations with 5 mM Ru under 1-sun illumination in 1 M NaOH electrolyte.

Fig. S8. J-V graphs of Zr-HT and Zr-HT/Ru-FeOOH with respect to different Ru-FeOOH hydrothermal (a) time at 50 °C and (b) different hydrothermal temperatures for 2.5 h under 1-sun illumination in 1 M NaOH electrolyte.

Fig. S9. J–V graphs of Zr-HT, Zr-HT/FeOOH and Zr-HT/Ru-FeOOH, photoanodes.

Fig. S10. J-V graphs of Zr-HT/Ru-FeOOH and Zr-HT/Ru-FeOOH/FNH with respect to different concentrations of FeCl₃.6H₂O (5, 10 and 15 mM) and Ni(NO₃)₂.6H₂O (5, 10 and 15 mM) under 1-sun illumination in 1 M NaOH electrolyte.

Fig. S11. J-V graphs of Zr-HT/Ru-FeOOH, Zr-HT/Ru-FeOOH/FH, Zr-HT/Ru-FeOOH/NH and Zr-HT/Ru-FeOOH/FNH photoanodes.

Fig. S12. ABPE plots of Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes.

The applied bias photon-to-current efficiency (ABPE) was calculated using the following equation:

ABPE (%) =
$$J_{ph} \times [(1.23 - V)/P] \times 100$$
 (S8)

where, $J_{\rm ph}$ is the photocurrent density (mA/cm²), V is the applied potential of the working electrode under illumination vs. RHE and P is the incident light intensity of the solar simulator (100 mW/cm²).

Fig. S13. Photocurrent density-potential (J-V) curves under 1-sun illumination of Zr-HT, a complex of Ru-FeOOH and FeNi(OH)_x one-step deposition using hydrothermal and microwave, and Zr-HT/Ru-FeOOH/FNH photoanodes.

As shown in Fig. S13, Ru-FeOOH and FeNi(OH)_x one-step deposition on Zr-HT photoanode via hydrothermal and microwave approaches reached the photocurrent density of 1.96 mA/cm^2 and 2.0 mA/cm^2 , respectively, at $1.23 \text{ V}_{\text{RHE}}$. These photocurrents are significantly lower than that of dual-layer cocatalyst samples (Zr-HT/Ru-FeOOH/FNH). Besides, these photoanodes exhibited a marginal cathodic onset shifting as compared to Zr-HT. From this observation, we can conclude that the two-step cocatalyst modification is preferable for effective PEC water oxidation than the one-step cocatalyst decoration.

Fig. S14. CV were obtained in the non-faradaic potential region of 0.75–0.85 V_{RHE} at various scan rates ranging from 10 to 250 mV/s for (a) Zr-HT, (b) Zr-HT/Ru-FeOOH and (c) Zr-HT/Ru-FeOOH/FNH photoanodes using 1 M NaOH electrolyte.

The electrochemically active surface area (ECSA) was determined using double-layer capacitance (C_{dl}) measurements at 10 different scan rates (10, 25, 50, 75, 100, 125, 150, 175, 200 and 250 mV/s) in the non-faradaic region of 0.75–0.85 V_{RHE} by using cyclic voltammograms (Fig. S14). The C_{dl} values were evaluated by plotting the corresponding absolute current *vs.* scan rate plot obtained at 0.80 V_{RHE}. The slopes of the fitting line can be used to estimate the C_{dl} of the as-prepared photoanodes, as the slope is twice the C_{dl} . The ECSA was then computed using the following formula based on the obtained C_{dl} values:⁶

$$ECSA = \frac{C_{dl}}{C_s}$$
(S9)

where, C_s is the specific capacitance of the sample, which is 40 μ F/cm² in 1 M NaOH electrolyte.

Fig. S15. *J*–*V* plots of Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes in 0.5 M $H_2O_2 + 1$ M NaOH electrolyte under 1-sun illumination and dark condition (dashed lines).

The bulk charge separation efficiency (η_{bulk}) and surface charge separation efficiency (η_{surface}) of as-synthesized photoanodes were measured by the addition of 0.5 M H₂O₂ in 1 M NaOH electrolyte solution. The η_{bulk} and η_{surface} were calculated by the following equations:⁷

$$\eta_{bulk} = J_{H_2 O_2} / J_{abs} \times 100$$

$$\eta_{surface} = \frac{J_{H_2 O_2}}{J_{H_2 O_2}} \times 100$$
(S10)
(S11)

where, J_{H2O} is the measured photocurrent density, J_{abs} is the photon absorption expressed as a current density (i.e., absorbed photon-to-current efficiency APCE =100%), and J_{H2O2} is the photocurrent density in the presence of H₂O₂.

Fig. S16. Bulk charge separation efficiencies of Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes.

Fig. S17. Mott-Schottky plots under dark conditions for Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes.

The Mott-Schottky plots were measured in dark conditions at a frequency of 100 Hz to understand the donor density (N_D) and flat band potential based on the following equation:⁸

$$\int C^{2} = \frac{2}{q\varepsilon\varepsilon_{0}N_{D}A^{2}}(V - E_{FB} - k_{B}T/q)$$
(S12)

1

where, q is the electron charge (1.602 × 10⁻¹⁹ C), ε is the dielectric constant of hematite (80), ε_0 is the permittivity of vacuum (8.854 × 10⁻¹² F m⁻¹), $E_{\rm FB}$ is the flat band potential, $k_{\rm B}$ is the Boltzmann constant (1.38 × 10⁻²³ J K⁻¹), T is the temperature and C is the capacitance derived from the electrochemical impedance obtained at each potential (V).

Fig. S18. IMPS plots at 1.23 V_{RHE} for Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes.

The intensity-modulated photocurrent spectroscopy (IMPS) study was performed using a blue LED by a frequency-response analyzer with a peak wavelength of 460 nm. The average transport time of the photogenerated electron (τ_{et}) can be calculated from the angular frequency of the minimum given by the following equation:⁹

$$\tau_{et} = (2\pi f_{min})^{-1}$$
(S13)

where, f_{\min} is the frequency at the minimum imaginary component in the IMPS semicircle.

Table S1. Frequency at the minimum imaginary component (f_{\min}) and average electron transport time (τ_{et}) in the IMPS spectra for Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes at 1.23 V vs. RHE.

Samples	$f_{\min}(\text{Hz})$	$\underline{\tau}_{\underline{et}} (\mathrm{ms})$
Zr-HT	199.5	0.79
Zr-HT/Ru-FeOOH	237.1	0.67
Zr-HT/Ru-FeOOH/FNH	251.2	0.63

Fig. S19. (a) Nyquist plots fitted circuit model, EIS curves of (b) Zr-HT, (c) Zr-HT/Ru-FeOOH, and (d) Zr-HT/Ru-FeOOH/FNH photoanodes at various potentials.

Fig. S20. (a) R_s , (b) R_1 , (c) CPE_1 and (c) CPE_2 values of Zr-HT, Zr-HT/Ru-FeOOH, and Zr-HT/Ru-FeOOH/FNH photoanodes at various potentials.

Fig. S21. Potential dependent carrier lifetime for Zr-HT, Zr-HT/Ru-FeOOH and Zr-HT/Ru-FeOOH/FNH photoanodes at various potentials.

The carrier lifetime of the photogenerated charges (τ_n) as a function of OCP was evaluated using the following equation:¹⁰

$$\tau_n = \frac{k_B T}{e} \left(\frac{dOCP}{dt}\right)^{-1} \tag{S14}$$

where, $k_{\rm B}$, *T*, *e* and d*OCP*/d*t* are Boltzmann's constant, Kelvin temperature, a charge of the electron and derivative of the OCP transient decay, respectively.

Fig. S22. (a) J-V graphs, (b) η_{surface} and (c) OCP plots of Zr-HT, Zr-HT/Ru-FeOOH, Zr-HT/FNH and Zr-HT/Ru-FeOOH/FNH photoanodes.

Ru-FeOOH and FeNi(OH)_x dual-cocatalyst layer deposited on Zr-Fe₂O₃ photoanode exhibited enhanced PEC activity than only FeNi(OH)_x coated Zr-Fe₂O₃ photoanode. This can be attributed to the intermediate Ru-FeOOH layer facilitating the surface charge separation and thereby hastening the hole transfer to the surface of the photoanode via FeNi(OH)_x layer. This observation was further evidenced by the surface charge separation efficiency (Fig. S22b). Moreover, the cathodic OCP_{dark} value of the Zr-HT/FNH photoanode compared to that of Zr-HT/Ru-FeOOH/FNH further corroborated the existence of Fermi level pinning effect in Zr-HT/FNH photoanode (Fig. S22c), which restricted the effective charge separation and charge transfer.

Fig. S23. *J*–*V* graphs of Zr-HT, Zr-HT/FNH and Zr-HT/FNH/Ru-FeOOH photoanodes.

Fig. S24. Faradaic efficiencies of Zr-HT/Ru-FeOOH/FNH photoanode.

The corresponding OER steps in alkaline solution are described as below:

$$* + 0H^{-} + h^{+} \rightarrow 0H^{*} + e^{-}$$
 (S15)

$$OH^* + OH^- + h^+ \rightarrow O^* + H_2O + e^-$$
 (S16)

$$0^{*} + 0H^{-} + h^{+} \rightarrow 00H^{*} + e^{-}$$
(S17)

$$00H^* + 0H^- + h^+ \to 0_2 + H_20 + * + e^-$$
(S18)

where, * represents the surface-active sites (metal active sites), and OH*, O* and OOH* are the reaction intermediates.

References

- 1. J. B. Hwang, M. A. Mahadik, P. Anushkkaran, S. H. Choi, W. S. Chae, H. H. Lee and J. S. Jang, *Appl. Surf. Sci.*, 2022, **596**, 153609.
- M. A. Gaikwad, U. V. Ghorpade, U. P. Suryawanshi, P. V. Kumar, S. Jang, J. S. Jang, L. Tran, J. S. Lee, H. Bae, S. W. Shin and M. P. Suryawanshi, ACS Appl. Mater. Interfaces, 2023, 5, 21123–21133.
- 3. T. Shen, J. Tian, L. Lv, C. Fei, Y. Wang, T. Pullerits and G. Cao, *Electrochim. Acta*, 2016, **191**, 62–69.
- 4. J. Huang, G. Hu, Y. Ding, M. Pang and B. Ma, J. Catal., 2016, 340, 261–269.
- 5. P. Anushkkaran, T. S. Koh, W. S. Chae, H. H. Lee, S. H. Choi and J. S. Jang, ACS Sustain. Chem. Eng., 2023, 11, 5895–5907.
- 6. L. Mao, H. Deng, M. Li and S. Shen, Sci. China Mater., 2023, 66, 603-613.
- J. Xiao, C. Li, X. Jia, B. Du, R. Li and B. Wang, J. Colloid Interface Sci., 2022, 633, 555–565.
- 8. B. Lei, D. Xu, B. Wei, T. Xie, C. Xiao, W. Ji and L. Xu, *ACS Appl. Mater. Interfaces*, 2021, **13**, 4785–4795.
- I. S. Hwang, M. A. Mahadik, M. S. Song, S. W. Lee, B. T. Oh, H. H. Lee, W. S. Chae, S. H. Choi and J. S. Jang, J. *Environ. Chem. Eng.*, 2023, 11, 109985.
- R. Chong, Z. Wang, J. Lv, J. Rong, L. Zhang, Y. Jia, L. Wang, Z. Chang and X. Wang, J. Catal., 2021, 399, 170–181.