Supplementary Information

Exploring the unexpected electrochemical dynamics of lithium vanadyl phosphate electrode in zinc battery system

Dimas Yunianto Putro, Kiki Rezki Lestari, Muhammad Hilmy Alfaruqi, M. Ghalib Alfaza, Zulkifli, Moonsu Song, Seunggyeong Lee, Balaji Sambandam, Vinod Mathew, Jaekook Kim

Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, Republic of Korea

Fig. S1 (a) FFT and (b) inverse FFT images analyzed using ImageJ. (c) The corresponding plot profile.

Fig. S2 (a) TEM image of the powder, (b) corresponding selected area electron diffraction, and (c) reciprocal lattice indexed along [010] zone axis.

Fig. S3 HR-TEM image of the sample.

Fig. S4 XPS spectrum of β -LiVOPO₄ sample.

Fig. S5 Electrochemical performance of β -LiVOPO₄ electrode using active material:conducting agent:binder ratio of 7:2:1.

Fig. S6 Initial voltage profiles of the Zn/β -LiVOPO₄ cells in different electrolyte concentrations cycled at a current density of 100 mA g⁻¹ within the potential window of 0.8 to 1.9 V.

Fig. S7 Cyclability test of the cathode using 0.5, 1.0, and 1.5 M Zn(CF₃SO₃)₂ electrolyte.

Fig. S8 Cyclic voltammetry (CV) of β -LiVOPO₄ in a 1 M Zn(CF₃SO₃)₂ + 0.5 M Li(CF₃SO₃)₂ electrolytes.

Fig. S9 Comparison of electrochemical 1^{st} discharge profiles of β -LiVOPO₄ in different electrolytes.

Fig. S10 Initial voltage profiles of the Zn/β -LiVOPO₄ cells in 1 M $Zn(CF_3SO_3)_2$ electrolyte cycled at a current density of 100 mA g⁻¹ within the potential window of 0.8 to 1.9 V. The cell was initially discharged.

Fig. S11 Proposed electrochemical mechanism of β -LiVOPO₄ cathode in the zinc cell.

Fig. S12 In situ SXRD patterns of the Zn/β -LiVOPO₄ cell taken during initial charge/discharge cycle.

Fig. S13 Magnified view of selected contour plots derived from *in situ* SXRD of the Zn/β -LiVOPO₄ cell obtained during initial charge/discharge cycle.

Fig. S14 Ex situ XRD patterns of the cycled electrodes.

Fig. S15 Magnified view of selected *ex situ* XRD patterns of the cycled electrodes derived from Fig. S14.

Fig. S16 (a) *Ex-situ* V K-edge XANES spectra of the β -LiVOPO₄ OCV. Corresponding magnified (b) pre-edge and (c) main edge spectra.

Fig. S17 *Ex situ* XRD of the electrodes after 10th and 100th discharge cycles.

Fig. S18 Ex situ SEM and EDX mapping of the cycled electrode.

 Table S1 Electrolyte pH value in various concentration.

Electrolyte Concentration (M)	рН
0.5	5.92
1	5.56
1.5	5.24
2	4.85

Electrolyte	Element	Concentration (ppm)
1 st charge	V	65
	Li	7.97
1 st discharge -	V	21.80
	Li	5.90

Table S2 Ex-situ ICP electrolyte after the initial charge and discharge cycles.