1 Interfacial engineering design induces enriched-defects expediting the catalytic

2 conversion kinetics of polysulfides

3 Guixin Zhang, Xiaorong Chen, Xinmeng Yu, Qingyu Li, Hongqiang Wang, Sijiang Hu, Juantao Jiang,

4 Youguo Huang*, Zhaoling Ma*

5 Guangxi Key Laboratory of Low Carbon Energy Materials, Guangxi New Energy Ship Battery

6 Engineering Technology Research Center, Guangxi scientific and technological achievements

7 transformation pilot research base of electrochemical energy materials and devices, School of

8 Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China

9 E-mail: zhaolingma@163.com (Zhaoling Ma), huangyg72@163.com (Youguo Huang)

10 1. Experimental section

11 1.1. Materials preparation

12 1.1.1 Chemicals

Polyvinylpyrrolidone [PVP K30] (AR, Sinopharm Chemical Reagent Co., Ltd.), hydroxylated multi-walled carbon nanotubes [CNT] (Chengdu Organic Chemicals Co., Ltd.), Cobalt chloride hexahydrate [CoCl₂·6H₂O] (AR, Xilong Chemical Co., Ltd.), Sodium molybdate dihydrate [Na₂MoO₄·2H₂O] (AR, Xilong Chemical Co., Ltd.), Sublimed sulfur [S] (AR, Sinopharm Chemical Reagent Co., Ltd.), Lithium sulfide [Li₂S] (AR, Aladdin Co., Ltd.), Urea [CO(NH₂)₂] (AR, Xilong

18 Chemical Co., Ltd.), Hydrochloric acid [HCl] (AR, Xilong Chemical Co., Ltd.).

19 1.1.2 Synthesis of Co-Mo/CNT precursors

20 Co-Mo/CNT precursors are prepared by a simple hydrothermal method. Firstly, 25 mg of surfactant polyvinylpyrrolidone (PVP, K30) is dissolved in 60 mL deionized water, and stirred until 21 completely dissolved. Then 50 mg hydroxylated carbon nanotubes (CNT) are added, stirred and 22 ultrasonic dispersed until even. The aqueous solution containing 10 mL 0.43 mmol CoCl₂·6H₂O and 23 the aqueous solution containing 10 mL 0.43 mmol Na₂MoO₄·2H₂O are slowly dripped into the water 24 25 and stirred for 30 min. Hydroxylated CNT can adsorb metal cations by electrostatic action to promote its in situ nucleation growth. The mixed liquid is put into the inner liner of a Teflon lined reactor and 26 hydrothermal reaction at 150 °C in a blast drying oven for 6 h. After cooling, the mixture is vacuum-27 filtered, and the black solid products are wished with deionized water for 3 times. Finally, the products 28 are collected overnight in a vacuum freeze-dryer. For comparison, the precursor with different Co-Mo 29 precursors loads is prepared by regulating the concentrations of CoCl₂·6H₂O and Na₂MoO₄·2H₂O. The 30 molar ratio of cobalt source and molybdenum source is 1:1, and other conditions remained unchanged. 31 1.1.3 Synthesis of CoS₂-MoS₂/CNT composites 32

33 CoS_2-MoS_2/CNT composites are processed by a simple vapor phase annealing vulcanization 34 method. The Co-Mo/CNT precursor prepared in the previous step is weighed at 100 mg and placed in 1 the middle of the quartz tube of the tubular furnace. Another 1000 mg of sublimated sulfur (S) is placed 2 in another sintering boat and placed on the upstream of the quartz tube of the tubular furnace. In the 3 atmosphere of argon, the room temperature is heated from 5 °C/min to 450 °C for 4 h. Collect solid 4 samples after cooling, seal, and dry storage. For comparison, the CoS_2-MoS_2/CNT composites with 5 different metal sulfide loads (n= 10%, 20%, 30% (prepared from 0.43 mmol cobalt and molybdenum 6 sources) and 40%). CoS_2-MoS_2/CNT composites are prepared by vulcanizing the precursor with 7 different Co-Mo compound loads in the previous process. Other conditions remained unchanged.

8 1.1.4 Synthesis of CoS₂/CNT composites

9 CoS₂/CNT composites are also prepared by simple hydrothermal and annealed vulcanization methods in order to control the synthesis of the same conditions. First, 25 mg of surfactant 10 11 polyethylpyrrolidone (PVP, K30) is dissolved in 60 mL deionized water, and magnetic stirring is performed for 10 min until PVP is completely dissolved. Then 50 mg hydroxylated multi-walled 12 carbon nanotubes (MWCNT) are added, stirred for 10 min and placed in an ultrasonic cleaner for 13 ultrasonic dispersion for 1 h. Then 0.34 mmol CoCl₂·6H₂O and 1.38 mmol urea (CO(NH₂)₂) are added 14 15 to stir for 30 min, followed by hydrothermal reaction in 150 °C for 6 h. After cooling, vacuum filtration is carried out, and the black solid products are wished with deionized water and ethanol for 3 times. 16 Finally, they are put in the vacuum freeze dryer overnight. Collected product Co(OH)₂/CNT. The 17 Co(OH)₂/CNT precursor is cured by annealing at 450 °C in a tubular furnace for 4 h to obtain 18 CoS2/CNT, and the metal sulfide load is controlled to 30%. 19

20 1.1.5 Synthesis of MoS₂/CNT composites

In order to control the synthesis of the same conditions, MoS₂/CNT composites are also prepared 21 by simple hydrothermal method and annealing vulcanization method. First, 25 mg of surfactant 22 polyethylpyrrolidone (PVP, K30) is dissolved in 60 mL deionized water, and magnetic stirring is 23 performed for 10 min until PVP is completely dissolved. Then 50 mg hydroxylated multi-walled 24 25 carbon nanotubes (MWCNT) are added, stirred for 10 min and placed in an ultrasonic cleaner for ultrasonic dispersion for 1 h. Then 0.22 mmol Na₂MoO₄·2H₂O and 0.308 mmol glucose (C₆H₆O₆, 26 reducing agent) are added into the mixture for 15 min, and 0.6 mL 10 M concentrated hydrochloric 27 acid (HCl) is added into the mixture drop by drop. The mixture is then subjected to hydrothermal 28 reaction in 180 °C for 12 h in a blast oven. After cooling, vacuum filtration is performed, and the black 29 solid products are wished with deionized water and ethanol for 3 times. Then, the black solid products 30 MoO₂/CNT are collected by freeze-drying. The MoO₂/CNT precursor is cured by annealing at 450 °C 31 in a tube furnace for 4 h to obtain MoS₂/CNT, and the metal sulfide load is controlled to 30%. 32

- 33 1.1.6 Preparation of Li_2S_6 solution and Visual adsorption experiment
- 34 To prepare 0.2 M Li_2S_6 solution, the sublimed sulfur and lithium sulfide with a molar ratio of 5:1

were added into the mixed solvent of 1, 2-dimethoxyethane/1, 3-dioxolane (DME/DOL, v:v=1:1) and 1 stirred at 60 °C for 12 h until formed a homogeneous solution. Then, 10 mg powder samples (CNT, 2 CoS₂/CNT, MoS₂/CNT, CoS₂-MoS₂/CNT) were immersed into the vials with 4 mL of diluted 2 mM 3 Li₂S₆ solution, respectively. These vials were gentle shaken by hand for several times to disperse the 4 samples, and digital image was recorded after 12 h of absorption. All of the above operations were 5 carried out in an argon-filled glove box. To more accurately estimate the absorption ability of samples 6 for Lithium polysulfide, the UV-Vis spectra experiments were measured for the of the supernatant 7 diluted 30 times after soaking the samples. 8

9 1.1.7 Assembly and tests of Li_2S_6 symmetric cells

10 To fabricate the electrodes, 80 wt% the powder samples (CNT, CoS₂/CNT, MoS₂/CNT, CoS₂-11 MoS₂/CNT), 10 wt% Super P and 10 wt% PVDF were added into a moderate NMP solvent to form the uniform slurries, following by coating onto Al foils and vacuum drying oven overnight at 60 °C 12 for 12 h. The coating Al foils were punched into a 14 mm diameter round sheet as identical the work 13 electrodes and counter electrodes. The electrodes were assembled into the CR2025 coin cells with a 14 15 Celgard 2500 separators and 50 µL of 0.2 M Li₂S₆ electrolyte containing 1 M LiTFSI (25 µL for each side of the separator). As a contrast, the cells of electrolyte without Li₂S₆ were assembled based on the 16 same method to eliminate the contribution of electrical double-layer capacitor. Cyclic voltammetry 17 (CV) measurements of the symmetric cells were operated from -0.8 V to 0.8 V at a scan rate of 5 mV/s. 18 Electrochemical impedance spectroscopy (EIS) was carried out in a sinusoidal voltage. The amplitude 19 20 was identified to 5 mV and the frequency range was between 0.01 Hz and 100 kHz.

21 1.1.8 Li_2S nucleation tests

22 Li₂S₈ solution (0.2 M) was prepared by mixing S₈ and Li₂S (molar ratio of 7:1) in tetraglyme 23 solvent containing 1M LITFSI under vigorous stirring at 50 °C until formed a well-distributed solution. Commercial carbon paper (CP) was used as the current collector to load samples (CNT, CoS₂/CNT, 24 25 CoS₂/CNT and CoS₂-MoS₂/CNT) with a loading about 1.5 mg. The obtained electrode, Li foil and 26 Celgard 2500 membrane were selected as the cathode, anode and separator. 25 µL of Li₂S₈ solution 27 (0.2 M) was dropped onto the cathode side, and then 25 µL of LiTFSI (0.2 M) without Li₂S₈ solution was dispersed to the Li anode side to obtain the CR2032 coin cells. The assembled cells firstly were 28 galvanostatically discharged to 2.06 V at 0.112 mA and then discharged potentiostatically at 2.05 V 29 until the current dropped below 10⁻⁵ A to allow Li₂S nucleation. Faraday's law is used for the 30 31 calculation of the Li₂S nucleation capacity of the integral area of plotted curves. The nucleation 32 capacity of Li₂S is calculated by the integral area of the plotted curves based on Faraday's law. The earlier peak position (t_m) represents the quicker Li₂S nucleation and growth rate constant (Ak²), which 33 is based on the following Eq. 1. 34

$$Ak^2 = 2/\pi t_m^3$$

2 1.1.9 Preparation of the functional separators

The powder samples (CNT, CoS_2/CNT , CoS_2/CNT and CoS_2-MoS_2/CNT), Super P and PVDF with a mass ratio of 8:1:1 were dispersed into NMP solvent to form the homogeneous slurries which was coated on PP separators (Celgard-2500), and then dried in a vacuum oven at 45 °C overnight. Finally, the dried functional separators were cut into round sheets with a diameter of 16.2 mm. The loading of catalysts on the functionalized separators is around 0.4 mg cm⁻¹.

8 1.1.10 Fabrication of S/rGO cathode and Li-S coin cells assembly

9 The S/rGO materials were synthesized by the typical melting diffusion method. Firstly, sublimed sulfur with the mass ratio of 9:1 was exhaustively mixed with rGO in a mortar until uniform. Then, 10 11 the mixed material was heated in a tubular furnace at 155 °C for 12 h under argon atmosphere as well as was heated to 200°C for 150 min to dislodge the sulfur on the surface of the material. TGA 12 experiment analyzed the content of sulfur in the S/rGO. S/rGO, Super P and PVDF with a weight ratio 13 of 8:1:1 were dispersed in suitable NMP solvent to produce the homogeneous slurries, following by 14 15 coating onto Al foils and vacuum drying at 60 °C for 12 h. The coated Al foils were punched into a 12 mm diameter round sheets as cathodes, the sulfur loading was about 1.2-1.4 mg/cm², and E/S 16 (electrolyte/sulfur) ratio is identified as 15 µL/mg for general Li-S cells. The S/rGO cathode was 17 assembled into the CR2032 coin Li-S cells with the functional separators (CNT, CoS₂/CNT, 18 CoS₂/CNT and CoS₂-MoS₂/CNT), as well as a certain amount of DOL/DME electrolyte composing of 19 20 1 M LiTFSI and 1 % LiNO₃ (E/S in coin cells was 15 µm/mg). All of steps of cell assemblies were 21 proceeded in an argon-filled glovebox (H₂O:≤0.01 ppm, O₂:≤0.01 ppm). CV curves and EIS tests was measured on electrochemical station (Germany ZAHNER Elektrik). CV measurement were conducted 22 between 1.7 V and 2.8 V at the scan rate of 0.1, 0.2, 0.3, 0.4 and 0.5 mV/s. Electrochemical impedance 23 spectroscopy (EIS) was operated with an AC voltage amplitude of 5 mV at the open-circuit potential, 24 25 and the frequency range was between 10 mHz and 100 kHz. The galvanostatic charged and discharged are conducted on the LAND CT2001A test system (Wuhan Landian Electronics Co., LTD) with a 26 voltage window 1.7-2.8 V under different current densities (1C = 1675 mA/g). 27

28 1.1.11 Li⁺ diffusion coefficient evaluation

The Li⁺ diffusion coefficient (D_{Li}^+) of the Bare, CNT, CoS₂/CNT, MoS₂/CNT, and CoS₂-30 MoS₂/CNT separators is evaluated by the CV curves at various scan rates based on the classic Randles-31 Sevcik equation as follows from **Eq. 2**.

32

$$I_p = (2.69 \times 10^5) \text{ Av}^{0.5} n^{1.5} D_{\text{Li}}^{+0.5} C_{\text{Li}}^+$$
 Eq. (2)²

33 Where I_p (A g⁻¹) represents the peak current densities, A (1.13 cm²) stands for the area of the 34 cathode, v (0.1-0.5 V s⁻¹) is the scan rates, n (n=2) means the electron transfer number, C_{Li}^{+} (1.1 mol

- 1 cm⁻³) indicates the Li⁺ concentration in the electrolyte. The values of D_{Li}^+ can be calculated by the 2 slope (k) of the linear relationship of the peak current densities (I_p) versus the square root of the scan 3 rate (v^{0.5}).
- 4 1.1.12 *In-situ* Raman spectroscopy experiments
- 5 Li-S coin cells with a quartz window on the negative shell are used for the *In-situ* Raman 6 spectroscopy experiments. A hole of 4 mm is punched on the Li-metal anode to allow the laser of 785 7 nm to shine on separator, and the schematic diagram of *In-situ* device are presented in **Fig. S14**. The 8 cells are operated at a rate of 0.2 C (1 C = 1675 mA/g) to discharge and charge.

9 1.2. Materials Characterization

- 10 The morphologies of the prepared materials are characterized by Scanning electron microscope (SEM,
- 11 FEI Quanta 200 FEG) and Transmission electron microscopy (TEM, Thermo Fisher Scientific Talos
- 12 F200S). Crystal structures of the prepared materials are analyzed by X-ray diffraction (Rigaku D/max-
- 13 2500) and Raman spectra in the wavelength of 785 nm (Renishaw in Via); chemical environment is
- 14 studied by X-ray photoelectron spectroscopy (XPS, Thermo Fisher Scientific K-Alpha). The sulfur
- 15 content in S/rGO materials is evaluated by Thermogravimetric Analysis (TGA, NETZSCH TG 209F1
- 16 Libra) under N₂ atmosphere, whose temperature from 30 °C to 600 °C at a temperature ramp rate of
- 17 10 °C/min. The electron paramagnetic resonance (EPR) signals of the prepared materials are collected
- 18 by an Endor spectrometer (Bruker A300) at room temperature.
- 19 2. Supporting Figures and Tables

20

21 Figure S1. SEM images of $CoS_{2-MoS2}/CNT-x$, x is the mass ratio of PVP to CNT. (a) 0%, (b) 10%, (c)

22 25%, (d) 50%, and (e)100%.

3 24%, 30% and 40%.

- 4
- 5 Figure S3. SEM images of Co-Mo/CNT-n% precursor and CoS₂-MoS₂/CNT-n% with different metal
- 6 composite contents for n=16%, 24%, 30% and 40%.

8 Figure S4. Digital photographs of 2 mM (a) and 5 mM (b) Li_2S_6 absorption experiment for CoS_2 -

- 9 $MoS_2/CNT-n\%$ with different metal composite contents for n= 16%, 24%, 30% and 40%. (c) UV-VIS
- 10 spectrum of 5 mM Li_2S_6 solution after absorption.

2 Figure S5. XRD patterns of CNT.

6 Figure S7. Average conductivity of (a) CoS_2/CNT , (b) MoS_2/CNT and (c) CoS_2-MoS_2/CNT .

2 Figure S8. SEM images of (a) CoS₂/CNT, (b) MoS₂/CNT, (c) CoS₂-MoS₂/CNT.

4 Figure S9. (a) N₂ adsorption-desorption isotherms, (b) corresponding pore diameter distributions of

- (a) (b) (b) (c) (c)
- 5 CoS_2 -MoS₂/CNT and CNTs.

6

1

7 Figure S10. (a, b) TEM images (inset: HRTEM image). (c) SAED pattern (d) EDS mapping of
8 CoS₂/CNT.

2 Figure S11. (a, b) TEM images (inset: HRTEM image). (c) SAED pattern (d) EDS mapping of

5 Figure S12. The EDS spectrum of CoS₂-MoS₂/CNT and its elemental analysis results.

- 2 Figure S13. SEM images of (a) CP-CNT, (b) CP-CoS₂/CNT, (c) CP-MoS₂/CNT and (d) CP-CoS₂-
- MoS_2/CNT after Li_2S nucleation tests.

6 Figure S14. (a) Digital photograph of Bare, CNT and CoS₂-MoS₂/CNT separators are located left,
7 center and right. Contact angle tests for (b) Bare, (c) CNT and (d) CoS₂-MoS₂/CNT separators. (e-f)

- 1 Bending and folding tests of CoS2-MoS2/CNT separator. SEM images for the surface of (g, h) Bare
- 2 and (i, j) CoS₂-MoS₂/CNT separators.

6 Figure S16. CV curves of Li-S cells with (a) CNT, (b) CoS₂/CNT, (c) MoS₂/CNT and (d) CoS₂7 MoS₂/CNT separators at scan rates from 0.1-0.5 mV/s.

- 1
- 2 Figure S17. The schematic diagram of *In-situ* Raman device.

4 Figure S18. The Tafel slopes of the corresponding redox peaks (a) C₁, (b)C₂ and (c) A for different

5 functionalized separators.

2 Figure S19. CV curves of the first three cycles of Li-S cells with (a) CNT, (b) CoS₂/CNT, (c)
3 MoS₂/CNT and (d) CoS₂-MoS₂/CNT separators.

2 Figure S20. Galvanostatic charge-discharge profiles of Li-S cells based on different separators at 0.23 2C. (a) CNT, (b) CoS₂/CNT, (c) MoS₂/CNT and (d) CoS₂-MoS₂/CNT.

2 **Figure S21.** Galvanostatic charge-discharge profiles of Li-S cells based on different separators at 3 various cycles. (a) CNT, (b) CoS_2/CNT , (c) MoS_2/CNT and (d) CoS_2-MoS_2/CNT . (The capacity 4 contributed by the first and second discharge platforms is represented by Q_H and Q_L respectively).

	R	R.
Separator samples	(Ω)	(Ω)
CNT	1.72	111.70
CoS ₂ /CNT	2.53	65.25
MoS ₂ /CNT	1.69	62.60
CoS2-MoS2/CNT	0.98	11.99

Table S1. EIS fitting results of Li-S batteries with different separators before cycling.

Table S2. EIS fitting results of Li-S batteries with different separators after 350 cycles.

Separator samples	$R_{s}\left(\Omega ight)$	$R_{f}(\Omega)$	$R_{ct}\left(\Omega ight)$
CNT	5.33	10.92	7.69
CoS ₂ /CNT	2.81	8.93	8.56
MoS ₂ /CNT	4.20	10.66	3.34
CoS ₂ -MoS ₂ /CNT	2.70	5.30	1.96

Catalysis materials	Rate per	formance (
	0.1 C	0.2 C	0.5 C	1C	2 C	Switched back 0.2C	Reference	Year
CF/FeP@C	1250	1105	910	594			3	2019
PCCNT@ NPS	1161	983	854	795	655	1043.6	4	2019
rGO-CNT-CoP(A)		1157	962	906	821	959	5	2020
3DP-Ni ₂ P		973.8	843.2	743.1	637.6	923.8	6	2021
Ni/SiO ₂ /G		1080	882	826	782	1092	7	2020
CoO/CoP-Box	1248.1	1055.6	910.1	720.7	597.1		8	2023
Janus-S	1244	1080	862	692	583		9	2021
CoNiO2/ Co4N		1198	941	860	765		10	2021
β-MoTe ₂ /CNT		933	817	736	671	759	11	2022
PLG	1288	840	693.3	564.5	467.1		12	2023
CoS2-MoS2/CNT		1361.4	1111.2	969.3	869.4	1151.1	This work	2023

Table S3. The comparison of rate performance for Li-S cells in this work and the literature (1 C =

1675 mA g⁻¹), and the corresponding plot is presented in Fig. 7c.

Catalysis materials	Initial capacity (mAh g ⁻¹)	Current density (C)	Cycle number	Retention capacity (mAh g ⁻¹)	Capacity retention rate (%)	Decay ratio per cycle (%)	Reference	Year
FeP	1273.7	0.1	100	1038.4	81.5	0.185	13	2018
PCCNT@NPS	1118	0.2	100	958	85.7	0.143	4	2019
rGO-CNT- CoP(A)	1043.6	0.2	70	888.5	64	0.200	5	2020
NC/G	1380	0.2	100	980	71	0.290	14	2019
MC-NS	1172	0.2	100	907.5	77.4	0.225	15	2019
3DP-Ni ₂ P	942.8	0.2	50	775.9	82.3	0.354	6	2021
Ni/SiO ₂ /G	1282	0.2	100	831	64.8	0.280	7	2020
CoFe/ NHCS	1292	0.2	100	1023	79.2	0.208	16	2021
CoO/CoP-Box	1292.5	0.1	300	753.9	58.4	0.139	8	2023
PLG	1284.4	0.2	200	623.4	48.6	0.257	12	2023
HE-LSMO	1217.9	0.2	200	876.9	72	0.140	17	2023
CoS ₂ - MoS ₂ /CNT	1402.1	0.2	350	955.6	68.2	0.090	This work	2023
CF/FeP@C	695	1.0	200	500	71.9	0.14	3	2019
3DP-LaB ₆ /SP	835	2.0	1000	401	48	0.052	18	2020
TiN@C	883	1.0	600	636	72	0.05	19	2021
MnO ₂	700	0.5	500	494	70.6	0.058	20	2022
CoP/C	938	1.0	500	562	59.9	0.08	21	2019
Janus-S	800	1.0	800	450	56.3	0.046	9	2021
Ni/NiO-C	793	1.0	500	484	61	0.078	22	2022
β-MoTe ₂ /CNT	873	1.0	300	585	67	0.11	11	2022
P-TiO _{2-x}	1049.8	1.0	600	508.1	48.4	0.086	23	2022

Table S4. The comparison of cycling performance for Li-S cells in this work and the literature.

Fe ₃ C- FeN@NCF	895	1.0	800	393.8	44	0.07	24	2023
CoS ₂ - MoS ₂ /CNT	921.8	2.0	1000	589.1	63.9	0.036	This work	2023

3. Supporting References

- 1 M. Wang, L. Fan, X. Sun, B. Guan, B. Jiang, X. Wu, D. Tian, K. Sun, Y. Qiu, X. Yin, Y. Zhang and N. Zhang, *ACS Energy Lett.*, 2020, **5**, 3041-3050.
- 2 Y. Wang, Z. Deng, J. Huang, H. Li, Z. Li, X. Peng, Y. Tian, J. Lu, H. Tang, L. Chen and Z. Ye, *Energy Storage Mater.*, 2021, 36, 466-477.
- 3 J. Shen, X. Xu, J. Liu, Z. Liu, F. Li, R. Hu, J. Liu, X. Hou, Y. Feng, Y. Yu and M. Zhu, ACS Nano, 2019, 13, 8986-8996.
- 4 Z. Guang, Y. Huang, X. Chen, X. Sun, M. Wang, X. Feng, C. Chen and X. Liu, *Electrochim. Acta*, 2019, **307**, 260-268.
- 5 R. Sun, Y. Bai, M. Luo, M. Qu, Z. Wang, W. Sun and K. Sun, ACS Nano, 2020, 15, 739-750.
- 6 F. Zhang, Z. Li, T. Cao, K. Qin, Q. Xu, H. Liu and Y. Xia, ACS Sustainable Chem. Eng., 2021, 9, 6097-6106.
- 7 C. Chen, Q. Jiang, H. Xu, Y. Zhang, B. Zhang, Z. Zhang, Z. Lin and S. Zhang, *Nano Energy*, 2020, 76, 105033.
- 8 W. Zhou, X. Wang, J. Shan, L. Yue, D. Lu, L. Chen, J. Zhang and Y. Li, *J. Energy Chem.*, 2023, 80, 128-139.
- 9 Y. Li, T. Gao, D. Ni, Y. Zhou, M. Yousaf, Z. Guo, J. Zhou, P. Zhou, Q. Wang and S. Guo, *Adv. Mater.*, 2021, 34, 2107638.
- 10 J. Pu, W. Gong, Z. Shen, L. Wang, Y. Yao and G. Hong, Adv. Sci., 2021, 9, 2104375.
- 11 G. Lin, M. Liang, L. Liu, J. Liu, Z. Ao, Z. Shi and X. Ke, ACS Appl. Mater. Interfaces, 2022, 14, 55616-55626.
- 12 C. Li, Q. Sun, Q. Zhang, C. Xu, S. Wang, Y. Ma, X. Shi, H. Zhang, D. Song and L. Zhang, *Chem. Eng. J.*, 2023, **455**, 140706.
- 13 S. Huang, Y. V. Lim, X. Zhang, Y. Wang, Y. Zheng, D. Kong, M. Ding, S. A. Yang and H. Y. Yang, *Nano Energy*, 2018, **51**, 340-348.
- 14 H. Xu, Q. Jiang, B. Zhang, C. Chen and Z. Lin, Adv. Mater., 2019, 32, 1906357.
- 15 J. Li, C. Chen, Y. Chen, Z. Li, W. Xie, X. Zhang, M. Shao and M. Wei, Adv. Energy Mater., 2019,

9, 1901935.

- 16 Z. Gu, C. Cheng, T. Yan, G. Liu, J. Jiang, J. Mao, K. Dai, J. Li, J. Wu and L. Zhang, *Nano Energy*, 2021, 86, 106111.
- 17 L. Tian, Z. Zhang, S. Liu, G. Li and X. Gao, Nano Energy, 2023, 106, 108037.
- 18 J. Cai, Z. Fan, J. Jin, Z. Shi, S. Dou, J. Sun and Z. Liu, Nano Energy, 2020, 75, 104970.
- 19 Y. Fan, K. Liu, A. Ali, X. Chen and P. K. Shen, Electrochim. Acta, 2021, 384, 138187.
- 20 X. Wang, L. Yang, Y. Wang, Q. Li, C. Chen, B. Zhong, Y. Chen, X. Guo, Z. Wu, Y. Liu, Y. Liu and Y. Sun, J. Colloid Interface Sci., 2022, 606, 666-676.
- 21 J. Lin, K. Zhang, Z. Zhu, R. Zhang, N. Li and C. Zhao, ACS Appl. Mater. Interfaces, 2019, 12, 2497-2504.
- 22 J. Pu, T. Wang, X. Zhu, Y. Tan, L. Gao, J. Chen, J. Huang and Z. Wang, *Electrochim. Acta*, 2022, 435, 141396.
- 23 W. Zhang, Y. Xu, J. Liu, Y. Li, E. M. Akinoglu, Y. Zhu, Y. Zhang, X. Wang and Z. Chen, *Small Sci.*, 2022, 3, 2200032.
- 24 M. Zhang, J. Mu, Y. Li, Y. Pan, Z. Dong, B. Chen, S. Guo, W. Yuan, H. Fang, H. Hu and M. Wu, *J. Energy Chem.*, 2023, **78**, 105-114.