Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Visible Ozone Detection and Removal in Two-Dimensional Mn(II)-Based Metal-Organic Frameworks

Chen Dong^{ab}, Tao He^a, Wei Wu^a, Guang-Rui Si^a, Lin-Hua Xie,*^a Jian-Rong Li^a

^a Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, Beijing University of Technology, Beijing 100124, China.

^b National Engineering Research Center for Rare Earth, Grirem Advanced Materials Co., Ltd., Beijing 100088, China.

E-mail: xielinhua@bjut.edu.cn

Table of Contents

Section 1. Chemicals and Instruments	1
Section 2. Experimental Section	2
Section 3 Crystallographic Data	3
Section 4 Supplementary Figures	4

Section 1. Chemicals and Instruments

All general reagents and solvents were commercially purchased used as received without further purification unless otherwise noticed. Manganese chloride tetrahydrate (MnCl₂·4H₂O), methanol (MeOH), alcohol (EtOH), 1-Bromododecane, 1-Bromohexadecane, and 1-Bromoicosane were purchased from Beijing InnoChem Science & Technology Co., Ltd. Potassium carbonate (K₂CO₃), hydrochloric acid (HCl), and sodium hydroxide (NaOH) were purchased from Beijing Chemical Reagent Company. *N*,*N*-dimethylformamide (DMF), tetrahydrofuran (THF), and hydrazine hydrate (50%) were bought from Sinopharm Chemical Reagent Co. Ltd. 4-watt UV lamp was bought from Beijing Aerospace HONGDA Optoelectronics Technology Co. Ltd. O₃ monitor (Model 205) was bought from 2B Technologies. Humidity generator (HSDG-A) was bought from Suzhou Huaxiangshida Environmental Protection Technology Co., Ltd.

The powder X-ray diffraction (PXRD) patterns were recorded on a Rigaku Smartlab3 X-ray Powder Diffractometer equipped with a Cu-sealed tube (λ = 1.54178 Å). N₂ adsorption/desorption isotherms were measured by using a BELSORP MAX II Surface Characterization Analyzer at 77 K. ¹H NMR data were recorded on a Bruker Avance 400 MHz spectrometer. An IR Affinity-1 instrument was used for recording Fourier transform infrared (FT-IR) spectra. Thermogravimetric analysis (TGA) data were obtained on a TGA-50 (Shimadzu) thermogravimetric analyzer with heating from 25 to 800 °C (10 °C min⁻¹) under air atmosphere. X-ray photoelectron spectroscopy (XPS) measurements were carried out using an ESCALAB 250 instrument. The water contact angles were measured on the contact angle system JY-82C (Chengde Dingsheng, China).

Section 2. Experimental Section

Scheme S1. Synthetic procedure for H₂L₁.

Synthesis of H₂L₁. Dimethyl 3,3'-dihydroxy-[1,1'-biphenyl]-4,4'-dicarboxylate (1, 302 mg, 1 mmol), 1-Bromododecane (2, 623 mg, 2.5 mmol), K₂CO₃ (276 mg, 2 mmol) and DMF (5 mL) were added to a 50 mL oneneck flask equipped with a condenser. The reaction mixture was heated to 85 °C and stirred for 3 h. After cooling to room temperature, the reaction mixture was concentrated in vacuo to remove a portion of the DMF. After that a mixed solution of methanol (10 mL), THF (10 mL), and NaOH solution (10 mL, 2 M) was added. The mixture was heated to 80 °C and stirred for 8 hours. The THF and MeOH were evaporated, and then dilute HCl was added to the remaining aqueous solution until the solution was at pH =3. The solid was collected by filtration, washed with water, and dried to give the final product as white solid (H₂L₁, **4**). ¹H NMR (400MHz, DMSO-*d*₆) δ : 7.71 (d, 1H), 7.35-7.31(m, 2H), 4.16 (t, 2H), 1.74 (m, 2H), 1.46 (m, 2H), 1.24 (m, 12H), 0.87-0.83 (d, 4H).

Scheme S2. H_2L_2 and H_2L_3 ligands.

Synthesis of H₂L₂. The synthetic method of H₂L₂ is similar to that of H₂L₁, except that compound **2** was replaced by 1-bromohexadecane. The product is a light pink solid (Scheme S2). ¹H NMR (400 MHz, CDCl₃) δ : 8.30 (d, 1H), 7.35 (d, 1H), 7.24 (s, 1H), 4.36 (t, 2H), 1.99 (m, 2H), 1.54 (m, 2H), 1.41 (m, 2H), 1.27 (m, 18H), 0.89 (t, 4H)

Synthesis of H₂L₃. The synthetic method of H₂L₃ is similar to that of H₂L₁, except that compound **2** was replaced by 1-bromoicosane. The product is a white solid (Scheme S2). ¹H NMR (400 MHz, CDCl₃) δ : 8.32 (d, 1H), 7.36 (d, 1H), 7.22 (s, 1H), 4.36 (t, 2H), 1.99 (m, 2H), 1.54-1.28 (m, 24H), 0.89 (t, 10H).

Section 3 Crystallographic Data

Compound name	BUT-82
Empirical formula	$C_{76}H_{112}O_{12}Mn_2$
Formula weight	1327.53
Temperature (K)	293(4)
Crystal system	triclinic
Space group	<i>P</i> -1
<i>a</i> (Å)	7.7021(3)
b (Å)	22.3914(11)
<i>c</i> (Å)	23.6873(16)
α (°)	112.516(5)
β (°)	90.520(4)
γ (°)	99.496(4)
V (Å ³)	3710.3(4)
Z	2
Calculated density (g/cm ³)	0.941
<i>F</i> (000)	4720.0
µ/mm⁻³	3.125
Reflections collected	45260
Independent reflections	8702 [<i>R</i> (int) = 0.0997]
Goodness-of-fit on F ²	0.967
Final R indices $[l > 2\sigma(l)]$	$R_1^a = 0.1303, \ wR_2^b = 0.3258$
R indices (all data)	$R_1 = 0.1631, wR_2 = 0.3550$
Largest diff. peak and hole (e/Å ³)	2.331/-0.857

Table S1. Crystal data and structural refinement of BUT-82 (CCDC number: 2277540).	

^a $R_1 = \Sigma(||F_0| - |F_C||) / \Sigma |F_0|.$

^b $wR_2 = [\Sigma w(|F_0|^2 - |F_C|^2)^2 / \Sigma w(F_0^2)]^{1/2}$

Section 4 Supplementary Figures

Figure S1. The image for BUT-82 single crystal under an optical microscope.

Figure S2. PXRD patterns of BUT-82 samples treated under different conditions.

Figure S3. (a) N_2 adsorption/desorption isotherms at 77 K for BUT-82.

Figure S4. (a) CO_2 adsorption/desorption isotherms of pristine and O_3 exposed BUT-82 at 195 K.

Figure S5. The static water contact angle of BUT-82. (b) The photo of BUT-82 crystals floating on the water surface.

Figure S6. Water adsorption/desorption isotherms at 298 K for BUT-82.

Figure S7. The TGA curves of pristine and O_3 exposed BUT-82 samples recorded under air flow.

Figure S8. SEM images of a) pristine and b) O_3 exposed BUT-82.

Figure S9. The FT-IR spectra of pristine and O_3 exposed BUT-82 samples.

Figure S10. Photographs of the color changes observed for BUT-82 treating with different gases for 30 min. (a) pristine BUT-82; (b) air; (c) N_2 ; (d) CO_2 ; (e) O_2 ; (f) O_3 .

Figure S11. Photographs of BUT-82 dispersed in MeOH after O_3 and subsequent N_2H_4 · H_2O vapor bubbling treatment, respectively.

Figure S12. (a) H_2L_1 ligand and (b) $MnCl_2 \cdot 4H_2O$ after 10 min of 10 ppm O_3 purging. (c) Changes of color and state of $MnCl_2 \cdot 4H_2O$ after placing in air or high humidity environment.

Figure S13. The XPS (a) survey and (b) Mn 2p spectra of pristine and O_3 exposed BUT-82 samples.

Figure S14. Photographs of (a, b) blank quartz wafer and (c, d) BUT-82 film. (e, f) Images of the BUT-82 film under an optical microscope.

Figure S15. The SEM image for BUT-82 microcrystal.

Figure S16. The schematic of the setup for O_3 sensing test.

Figure S17. Photographs of BUT-82 films after 300s of O₃ purging with different concentrations at 50% RH.

Figure S18. The photograph of the BUT-82 film in H_2O after O_3 bubbling treatment.

Figure S19. The color recognition software on the smart phone.

Figure S20. RGB values response of BUT-82 films in the cycle test of O_3 sensing.

Figure S21. PXRD patterns of the BUT-82 film before and after the cycle test of O_3 sensing.

Figure S22. Photographs of BUT-82 films after 60 min of 50 ppm O₃ purging at various humidity levels.

Figure S23. UV/Vis spectra and absorption difference of BUT-82 films after O_3 purging with various concentrations under different relative humidity levels. (a, b) 50 ppm, (c, d) 30 ppm, and (e, f) 10 ppm.

Figure S24. PXRD patterns of BUT-82, Mn-16, and Mn-20 samples.

Figure S25. PXRD patterns of Mn-16 samples treated under different conditions.

Figure S26. PXRD patterns of Mn-20 samples treated under different conditions.

Figure S27. (a) N_2 adsorption/desorption isotherms at 77 K and (b) water adsorption/desorption isotherms at 298 K of Mn-16.

Figure S28. (a) N_2 adsorption/desorption isotherms at 77 K and (b) water adsorption/desorption isotherms at 298 K of Mn-20.

Figure S29. Photographs of pristine and O_3 exposed (a) Mn-16 and (b) Mn-20 samples.

Figure S30. The schematic of the setup for O_3 decomposition test.

Figure S31. The O₃ removal efficiencies for BUT-82. Other test conditions: 0.02 g test substance diluted with 0.4 g quartz sand, concentration of $O_3 = 1$ ppm, flow rate = 0.5 L min⁻¹, RT or 50 °C.