Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting information

A new versatile crystalline sponge for organic structural analysis without the need of activation

Jin-Chang Liu¹, Wei-Ping Huang¹, Yu-Xin Tian¹, Wei Xu^{1*}, Wen-Cai Ye^{1,2*}, Ren-Wang Jiang^{1,2*}

 State Key Laboratory of Bioactive Molecules and druggability Assessment, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China;
 International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China.

Correspondence:

Ren-Wang Jiang: <u>trwjiang@jnu.edu.cn</u> Wen-Cai Ye: <u>chywc@aliyun.com</u>

Wei Xu: <u>xwnail2003@163.com</u>

Tel: 8620-85221016; Fax: 8620-85221559

Table of contents

S1. Syntheses of intermediate and ligand

Scheme 1 synthesis of intermediate and ligand

Figure S1a¹H-NMR spectrum of ligand.

Figure S1b¹³C-NMR spectrum of ligand.

Figure S1c HRESI-MS of the ligand

S2 Synthesis of CMOF (crystalline sponge)

Fig. S2a Adsorption of rhodamine by CMOF

Fig. S2b Stability of CMOF in vacuum chamber

Fig. S2c The N₂ adsorption isotherms at 77 K

S3 Stability of the CMOF crystalline sponge

Figure S3a Stability of the CMOF crystal sponge in different solvents and time points.

Figure S3b Powder X-ray diffraction patterns of CMOF in different solvents.

Table S3a The cell parameters after immersion in different solvents

S4 Guest encapsulation by crystal sponge

S5 Identification of trans-cinnamaldehyde (G10) in natural product isolation

- S6 Synthesis of benzyl salicylate (G11)
- S7 Biosynthesis of veratryl alcohol (G12)

S8 Synthesis of acetyleugenol (G14) from eugenol (G13)

Fig. S8 IR of (Eugenol, DXF) and (acetylated eugenol, YSDXF).

S9 ¹H-NMR

- Fig. S9a ¹H NMR spectrum of digested CMOF \supset G2 in DMSO- d_6 .
- Fig. S9b ¹H NMR spectrum of digested CMOF \supset G3 in DMSO- d_6 .
- Fig. S9c ¹H NMR spectrum of digested CMOF \supset G6 in DMSO- d_6 .
- Fig. S9d ¹H NMR spectrum of digested CMOF \supset G8 in DMSO- d_6 .
- Fig. S9e ¹H NMR spectrum of digested CMOF \supset G11 in DMSO- d_6 .
- Fig. S9f¹H NMR spectrum of digested CMOF \supset G12 in DMSO- d_6 .
- Fig. S9g ¹H NMR spectrum of digested CMOF \supset G13 in DMSO- d_6 .
- Fig. S9h ¹H NMR spectrum of digested CMOF \supset G14 in DMSO- d_6 .

S10 Rapid capture of guest molecule in one minute

Fig. S10 Rapid Structure determination of 1,4-dimethoxybenzene.

S11 Reusability of CMOF

- Fig. S11 Reusability of CMOF. IR spectrum was used to monitor the presence and disappearance of G8 signal.
- S12 Thermogravimetric analyses and differential scanning calorimetry

Fig. S12a Thermogravimetric analysis

Fig. S12b Differential scanning calorimetry

S13 Details for the crystal structure elucidation and refinements

Table S1 Crystal data and refinement details of CMOF⊃guests

Table S2 The guest occupancy in CMOF⊃guests

Table S3 The guest volume and three-dimensional values

Table S4. C-H $\cdots \pi$ intermolecular interactions in CMOF \supset guests

Table S5. Geometric parameters of the O–H···O and C–H···O hydrogen bonding interactions in CMOF⊃guests

Table S6 Details for the refinement restrain & constrain

S1. Syntheses of intermediate and ligand

Scheme 1 synthesis of intermediate and ligand

(1) Synthesis of 3,3',6,6'-tetrabromo-9,9'-bicarbazole (intermediate)

To a solution of 3,6-dibromo-9H-carbazole 1g (3.08 mmol, 1eq) in 15 mL acetone, KMnO₄ 1.22g (7.69 mmol, 2.5eq) was slowly added at room temperature. The resulting mixture was stirred at 65 °C overnight and cooled down to room temperature. After evaporation of acetone under reduced pressure, the precipitate washed with dichloromethane three times, combined the organic layers and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (petroleum ether) to give white solid powder intermediate in 53.5% yield (533 mg, 0.82mmol).

(2) Synthesis of 3,3',6,6'-tetrakis(pyridin-4-ylethynyl)-9,9'-bicarbazole (ligand)

The intermediate 1.5g (2.31 mmol, 1eq), 4-ethynylpyridine hydrochloride 2.58g (18.5 mmol, 8eq), diisopropylamine 12ml, tert-butylphosphane 705ul (3.00 mmol, 1.3eq), CuI 26.4mg (0.139 mmol, 0.06eq), PdCl₂(PhCN)₂ 88.6mg (0.231 mmol, 0.1eq) were dissolved in dry THF (40 mL). The reaction was stirred at 50 °C under N₂ for 48 h. After cooling down to room temperature, the reaction was diluted with water and CH₂Cl₂. The aqueous layer was extracted with CH₂Cl₂ for three times. The combined organic layers were washed with brine and dried over Na₂SO₄. After evaporation of CH₂Cl₂, the residue was purified by flash column

chromatography on silica gel (CH_2Cl_2 : $CH_3OH = 60$: 1) to give light yellow ligand in 79.2% yield (1.35 g, 1.83mmol).

Fig. S1a¹H-NMR spectrum of the ligand (400 MHz, DMSO-d₆).

Fig. S1b¹³C-NMR spectrum of the ligand (400 MHz, CDCl₃).

Fig. S1c HRESI-MS of the ligand showing the molecular ion peak: $[M+H]^+=737.2451$, $[M+2H]^{2+}=369.1279$

S2 Synthesis of CMOF (crystal sponge)

CMOF was prepared by a layer-by-layer method in a test tube (diameter = 12 mm). A twolayered solution was prepared from a tetrahydrofuran solution of ligand (0.015 mmol/4 ml; bottom), and an acetonitrile solution of CuI (0.01 mmol /3ml; top) in a capped test tube and kept at 25°C in an incubator. Upon slow diffusion, high quality single crystals began to grow after two days. The yield of the crystals was 20 % after 10 days incubation.

We prepared a 25 mg/L rhodamine in THF. Then, CMOF (5 mg) was added to rhodamine solution, 12h and 24 h later, photos were taken separately. We also used UV-visible spectrophotometer to monitor the spectrum (Fig. S2a).

Fig. S2a Adsorption of rhodamine (25 mg/L) by CMOF (5 mg). The solution color was changed to pink to colorless and the absorption from the UV spectrum was decreased.

Although the large pore size of CMOF should allow N_2 adsorption, because the CMOF sample was put in a vacuum chamber before testing, loss of solvent and collapse of CMOF occurred. Obvious color changes from yellow to black was observed after the vacuum process (Fig. S2b) and no adsorption of N_2 at 77 K with negligible BET area (-0.0040 m²/g) was found (Fig. S2c).

Fig. S2b Stability of CMOF in vacuum chamber. (a) original CMOF crystals; (b) CMOF crystals were put in the vacuum chamber for 10 minutes.

Fig. S2c The $N_{\rm 2}$ adsorption isotherms at 77 K

S3 Stability of the CMOF crystal sponge

Fig. S3a Stability of the CMOF crystal sponge in different solvents and time points.

Fig. S3b Powder X-ray diffraction patterns of CMOF in different solvents (Rigaku X-ray diffractometer miniflex600, CuKa radiation, 40kV, 15mA, scanning range 3°-50°, speed: 5°/min). It could be seen that CMOF was also not stable in DMF (Fig. S3b-ii and DMSO (Fig. S3b-iii). Surprisingly, we found that CMOF could be protected by Vaseline. The PXRD patterns of CMOF in cyclohexane (Fig. S3b-v), chloroform (Fig. S3b-vi) and tetrahydrofuran (Fig. S3b-vii) were consistent with the simulated pattern from single crystal data (Fig. S3b-viii) except for the un-flat baseline due to the presence of Vaseline.

Items	Cyclohexane	Toluene	Chloroform	Tetrahydrofuran
shape	unchange	unchange	unchange	unchange
Color	unchange	unchange	unchange	unchange
System	tetragonal	tetragonal	tetragonal	tetragonal
Space group	I4 ₁	I4 ₁	I4 ₁	I4 ₁
a(Å)	22.0341(6)	21.7143(3)	21.6640(6)	21.8272(4)
b(Å)	22.0341(6)	21.7143(3)	21.6640(6)	21.8272(4)
c(Å)	40.3722(2)	41.3410(5)	41.4120(7)	40.7299(8)
α(°)	90	90	90	90
β(°)	90	90	90	90
γ(°)	90	90	90	90
V(Å)	19600.8(16)	19492.7(6)	19435.8(7)	19404.8(8)

Table S3a The cell parameters after immersion in different solvents

S4 Guest encapsulation by crystal sponge

 $CMOF \supset G1$ (diphenyl ether). The freshly prepared single crystals of CMOF (2 mg) were soaked in oxydibenzene (200ul) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G2 (1,3-dimethoxybenzene). The freshly prepared single crystals of CMOF (2 mg) were soaked in 1,3-dimethoxybenzene (200ul) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

 $CMOF \supset G3$ (1,3-dibromobenzene). The freshly prepared single crystals of CMOF (2 mg) were soaked in 1,3-Dibromobenzene (200ul) in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G4 (3,4-dimethoxyphenol). The freshly prepared single crystals of CMOF (2 mg) were soaked in 3,4-dimethoxyphenol solution (10 mg 3,4-dimethoxyphenol dissolved in 200ul tetrahydrofuran) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G5 (1,4-dimethoxybenzene). The freshly prepared single crystals of CMOF (2 mg) were soaked in 1,4-dimethoxybenzene solution (10 mg 1,4-dimethoxybenzene dissolved in 200 µl tetrahydrofuran) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G6 [(1*R*)-(-)-menthyl acetate]. The freshly prepared single crystals of CMOF (2 mg) soaked in 6 (200ul) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction,

one of the single crystals was used for SXRD analysis.

CMOF \supset G7 [(1S)-(+)-menthyl acetate]. The freshly prepared single crystals of CMOF (2 mg) were soaked in 7 (200ul) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset ent1 (6&7) [(1*R*)-(-)-menthyl acetate & (1*S*)-(+)-menthyl acetate]. The freshly prepared (without activated) single crystals of CMOF (2 mg) were soaked in mixed solution [(1*R*)-(-)-menthyl acetate (100ul) and (1*S*)-(+)-menthyl acetate (100 µl)] in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G8 (4*R*(-)-carvone). The freshly prepared single crystals of CMOF (2 mg) were soaked in 4*R*(-)-carvone (200 µl) in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G9 (4S(+)-carvone). The freshly prepared single crystals of CMOF (2 mg) were soaked in (4S(+)-carvone) (200µl) in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset ent2 (8&9) [4R(-)-carvone & 4S(+)-carvone]. The freshly prepared single crystals of CMOF (2 mg) were soaked in mixed solution [4R(-)-carvone (100ul) and 4S(+)-carvone (100ul)]in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset (G2&G5) (1,3-dimethoxybenzene &1,4-dimethoxybenzene). The freshly prepared single crystals of CMOF (2 mg) were soaked in mixed solution [100mg 1,3dimethoxybenzen and 100mg 1,4-dimethoxybenzene dissolved in 100 ul tetrahydrofuran]in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G10 (cinnamaldehyde). The freshly prepared single crystals of CMOF (2 mg) were soaked in cinnamaldehyde (200ul) in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G11 (benzyl 2-hydroxybenzoate). The freshly prepared single crystals of CMOF (2 mg) were soaked in benzyl 2-hydroxybenzoate (200ul) in a 2ml vial. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G12 [(3,4-dimethoxyphenyl)methanol]. The freshly prepared single crystals of CMOF (2 mg) were soaked in (3,4-dimethoxyphenyl)methanol (200ul) in a 2ml vial. The vial was kept in 25 °C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G13 (4-allyl-2-methoxyphenol). The freshly prepared single crystals of CMOF (2 mg) were soaked in 4-allyl-2-methoxyphenol (200ul) in a 2ml vial. The vial was kept in 25

°C for 3 days. After the reaction, one of the single crystals was used for SXRD analysis.

CMOF \supset G14 (4-allyl-2-methoxyphenyl acetate). The freshly prepared single crystals of CMOF (2 mg) were soaked in 4-allyl-2-methoxyphenyl acetate (200ul) in a 2ml vial, The sample is formed by the reaction of eugenol and acetyl chloride. The vial was kept in 25 °C for 5 days. After the reaction, one of the single crystals was used for SXRD analysis.

S5 Identification of trans-cinnamaldehyde (G10) in natural product isolation

The bark of Cinnamomum cassia (10g) was cut into small species. After extraction with ethanol (3 x 100ml), the solutions were combined and condensed under reduced pressure to afford a crude extract (0.8 g). The crude extract was subjected to column chromatography and eluted with gradient petroleum ether-ethyl acetate (100:1, 10:1, 5:1 and 1:1). The 10:1 eluted fraction showed the strongest antibacterial activity (*Staphylococcus aureus*). Crystalline sponge CMOF was put into the neat oil of this fraction. Three days later, one of crystalline sponges was analyzed by X-ray diffraction.

S6 Synthesis of benzyl salicylate (G11)

Sodium salicylate 0.50g (3.12 mmol, 1eq) and benzylbromobenzene 0.53g (3.12 mmol,1eq) were dissolved in 2ml of anhydrous DMF solution, the reaction solution was stirred at 100 °C for 4h. Poured the reaction solution into 20ml water, added dichloromethane to extract three times (10ml*3), combined the organic phases and washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain a colorless liquid benzyl salicylate 0.68 g (3.00 mmol), yield 96%.

S7 Biosynthesis of veratryl alcohol (G12)

The Fungus *Phanerochaete chrysosporium* purchased from China Center of Industrial Culture Collection) was cultured in a PDA broth (100ml, potato dip powder) for 48 hours. Then the cuture both was extracted with ethyl acetate (100ml). The solvent was removed under reduced pressure to afford a oil like residue (55 mg). Crystalline spone CMOF was put into the residue. Three days later, one of crystalline sponges was analyzed by X-ray diffraction.

S8 Synthesis of acetyleugenol (G14) from eugenol (G13)

Eugenol 0.50g (3.04 mmol, 1eq) and triethylamine (1ml), were dissolved in 2ml dichloromethane solution, then add acetyl chloride 0.24g (3.04 mmol, 1eq), the reaction solution was stirred at 25 °C for 12h. A small part of the reaction mixture (50 μ l) was selected and crystalline sponge CMOF was put into it. After the appearance of strong carbonyl peak in IR spectrum, one of crystalline sponges was analyzed by X-ray diffraction. The other part of the reaction mixture was concentrated under reduced pressure, the crude product was separated by column chromatography (petroleum ether: ethyl acetate = 3:1), to obtain a white liquid eugenol acetate 0.52g (2.52 mmol) with a yield of 83 %.

Fig. S8 IR of (Eugenol, G13) and (acetylated eugenol, G14). About 1 mg crystal sponge containing either G13 or G14 were ground together with dry potassium bromide using a mortar and pestle to form a transparent disk. Then the disk was analyzed on JASCO FT/IR-480 Plus spectrometer.

S9 ¹H-NMR

The crystal sponge CMOF (2 mg) after soaking in guest solution was washed with THF (0.5 ml for two times). Then, it was transferred to a 2 mL vial, where deuterated dimethyl sulfoxide (DMSO-d₆, 600 μ L) and H₂SO₄ (20 μ L, 1 M in D₂O) were added. The vial was sonicated for 10 minutes and then placed in an oven at 80 °C for 30 minutes to completely dissolve the crystals. The final clear solution was used for ¹H NMR experiments.

Fig. S9a ¹H NMR spectrum of digested CMOF \supset G2 in DMSO-*d*₆.

Fig. S9b ¹H NMR spectrum of digested CMOF \supset G**3** in DMSO- d_6 .

Fig. S9c ¹H NMR spectrum of digested CMOF \supset G6 in DMSO-*d*₆.

Fig. S9d ¹H NMR spectrum of digested CMOF \supset G8 in DMSO- d_6 .

Fig. S9e¹H NMR spectrum of digested CMOF \supset G11 in DMSO- d_6 .

Fig. S9f¹H NMR spectrum of digested CMOF \supset G12 in DMSO- d_6 .

Fig. S9g ¹H NMR spectrum of digested CMOF \supset G13 in DMSO-*d*₆.

Fig. S9h ¹H NMR spectrum of digested CMOF \supset G14 in DMSO- d_6 .

S10 Rapid capture of guest molecule in one minute

A tiny crystal of CMOF (~100 × 100 × 100 μ m³) was placed in the insert of a HPLC vial with 50µL tetrahydrofuran solution of *p*-dimethoxybenzene (500 µg). After soaking for 1 minute at room temperature, the crystal sponge was selected and directly tested on an in-house X-ray diffractometer. The crystal structure was fully determined from the diffraction data and showed that *p*-dimethoxybenzene molecule was trapped in the cavity of CMOF.

Fig. S10 Rapid Structure determination of 1,4-dimethoxybenzene.

(1) Chemical structure of 1,4-dimethoxybenzene, (2) the asymmetric unit of CMOF \supset 1,4-dimethoxybenzene, (3) 1,4-dimethoxybenzene was captured in the cavity of CMOF. The solvent molecules were omited for clarity.

S11 Reusability of CMOF.

IR spectrum was used to monitor the presence and disappearance of G8 signal. IR spectra was measured on a Shimadzu IRSpirit FTIR spectrophotometers.

Fig. S11 Reusability of CMOF. IR spectrum was used to monitor the presence and disappearance of G8 signal.

S12 Thermogravimetric analyses and differential scanning calorimetry

Thermogravimetric analyses (TGA) and differential scanning calorimetry (DSC) were performed on a Thermogravimetric Analyzer (TGA2, Mettler-Toledo) and Q20, (TA instruments), respectively.

Fig. S12a Thermogravimetric analysis. (a) Vaseline; (b) Vaseline+CMOF; (c) Vaseline+CM OF+G5

Fig. S12b Differential scanning calorimetry. (a) Vaseline; (b) Vaseline+CMOF showing an exothermal transition temperature at 320°C; (c) Vaseline+CMOF+G5 showing an exothermal transition temperature at 320°C

S13 Details for the crystal structure elucidation and refinements

All single-crystal X-ray measurements were performed on a Rigaku Oxford Atals-CCD diffractometer using CuK α (λ = 1.54056 Å) radiation. The diffraction data were collected in the ω -scanning mode (resolution 0.80-0.85Å). All crystal structures were solved by direct methods (SHELXTL-2014) and refined by full-matrix least-squares on F^2 using the Olex2 software package. In the structure refinements, non-H atoms were refined anisotropically. H-atoms bonded to carbons were placed on the geometrically ideal positions by the riding model. Due to high symmetries and high pore volumes, the solvent molecule (tetrahydrofuran) was extremely disordered, and could not be located for refinement. Thus, the residual electrons were squeezed by using the "solvent mask" function of Olex2 software. The numbers of masked solvent molecules were calculated based on the masked electron using Platon software. For these host-guest complexes, disorders were also found in the guest molecules, and thus proper restrains or constrains (Table S6) were applied.

	Table	S1 Crystal data a	nd refinement detail	ls of CMOF⊃guests					
Items	CMOF	CMOF ⊃G1	CMOF ⊃G 2	CMOF ⊃G 3	CMOF ⊃G 4	CMOF ⊃G 5	CMOF ⊃G 6	CMOF ⊃G 7	CMOF ⊃ent1
Formula	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$	$Cu_{4}I_{4}C_{52}H_{28}N_{6}$	$Cu_{16}I_{16}C_{208}H_{112}N_{24}$	$Cu_{4}I_{4}C_{52}H_{28}N_{6}$	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$	$Cu_{4}I_{4}C_{52}H_{28}N_{6} \\$
		$1*(C_{12}H_{10}O)$	$2*(C_8H_{10}O_2)$	$2.5^{*}(C_{6}H_{4}Br_{2})$	$0.5^{*}(C_{8}H_{10}O_{3})$	$3^* (C_8 H_{10} O_2)$	$1*1(C_{12}H_{22}O_2)$	$1*1(C_{12}H_{22}O_2)$	$1*(R-C_{12}H_{22}O_2)$
	2.33(C ₄ H ₈ O)	0.16(C ₄ H ₈ O)	$6.5(C_4H_8O)$	14.625(C ₄ H ₈ O)	$7(C_4H_8O)$	$0.8(C_4H_8O)$	1.3(C ₄ H ₈ O)	13.5(C ₄ H ₈ O)	0.5^{*} (S-C ₁₂ H ₂₂ O ₂) 5.8(C ₄ H ₂ O)
Mw [gmol-1]	1666.56	1668.76	2243.55	7638.79	2080.37	1970.72	1790.59	2670.34	2214.20
System	tetragonal	tetragonal	tetragonal	triclinic	tetragonal	tetragonal	tetragonal	tetragonal	tetragonal
Space group	$I4_1$	$I4_1$	$I4_1$	P1	$I4_1$	$I4_1$	$I4_1$	$I4_1$	$I4_1$
a(Å)	21.8232(5)	22.1406(5)	21.7043(2)	21.8801(3)	22.1118(4)	21.6214(9)	22.1908(2)	22.1489(5)	22.2780(3)
b(Å)	21.8232(5)	22.1406(5)	21.7043(2)	22.0969(3)	22.1118(4)	21.6214(9)	22.1908(2)	22.1489(5)	22.2780(3)
c(Å)	41.096(3)	40.3041(18)	41.2270(6)	24.3319(4)	40.2666(10)	41.405(4)	40.2740(6)	40.3009(18)	40.0457(7)
α(°)	90	90	90	109.0950(10)	90	90	90	90	90
β(°)	90	90	90	114.5340(10)	90	90	90	90	90
γ(°)	90	90	90	96.3860(10)	90	90	90	90	90
V(Å)	19572.2(15)	19757.3(13)	19421.1(5)	9686.4(3)	19687.6(9)	19356(2)	19832.2(5)	19770.6(13)	19875.1(6)
Z	8	8	8	1	8	8	8	8	8
Resolution(Å)	0.80	0.85	0.81	0.80	0.84	0.83	0.80	0.81	0.81
p(calcg/cm ³)	1.131	1.122	1.535	1.129	1.404	1.353	1.199	1.795	1.480
R _{int}	0.0415	0.0478	0.0311	0.0595	0.0560	0.0546	0.0637	0.0791	0.0353
GOOF	0.971	1.089	1.046	0.948	1.064	0.987	1.117	0.962	1.084
Flack	0.128(8)	0.25(2)	0.164(8)	0.464(3)	0.503(11)	0.061(12)	0.287(9)	0.277(9)	0.298(11)
Temp. (K)	99.99(13)	100.00(10)	99.97(13)	150.00(10)	99.98(10)	99.98(10)	149.99(10)	100.00(10)	130.00(11)
R1 [I >2σ(I)]	0.0898	0.1349	0.0663	0.0671	0.1348	0.1106	0.0887	0.1126	0.0886
wR2(all data)	0.1909	0.2977	0.1602	0.1667	0.2431	0.2237	0.2455	0.2097	0.2247
F(000)	6426.0	6400.0	8944.0	3115.0	8248.0	7712.0	6976.0	10888.0	8856.0
CCDC No.	2309572	2309573	2309575	2309587	2309579	2309576	2309577	2309581	2309585
Items	CMOF ⊃G 8	CMOF ⊃G 9	CMOF ⊃ent2	CMOF ⊃G 10	CMOF ⊃G11	CMOF ⊃G 12	CMOF ⊃G 13	CMOF ⊃G 14	CMOF ⊃G 2 &G 5
Items Formula	CMOF ⊃G 8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆	CMOF ⊃G 9 Cu₄I₄C ₅₂ H ₂₈ N ₆	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆	CMOF ⊃G 10 Cu₄I₄C ₅₂ H ₂₈ N ₆	CMOF ⊃G 11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆	CMOF ⊃G 12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂	CMOF ⊃G 13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆	CMOF ⊃G 14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆	CMOF ⊃G 2 &G 5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆
Items Formula	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O)	CMOF \supset G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O)	CMOF \supset ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(<i>R</i> -C ₁₀ H ₁₄ O)	CMOF ⊃G 10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O)	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃)	CMOF \supset G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ 6* (C ₉ H ₁₂ O ₃)	CMOF \supset G13 Cu ₄ L ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂)	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃)	CMOF ⊃G 2 &G 5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂)
Items Formula	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O)	CMOF ⊃G 9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O)	CMOF \supset ent2 cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R-C ₁₀ H ₁₄ O) 1.42*(S-C ₁₀ H ₁₄ O)	CMOF ⊃G 10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O)	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O)	CMOF \supset G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ 6* (C ₉ H ₁₂ O ₃) 7.5(C ₄ H ₈ O)	CMOF ⊃G 13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂)	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O)	CMOF ⊃G 2 &G 5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂) 0.75* (<i>p</i> -C ₈ H ₁₀ O ₂)
Items Formula	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O)	CMOF ⊃G 9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O)	CMOF \supset ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(<i>R</i> -C ₁₀ H ₁₄ O) 1.42* (<i>S</i> -C ₁₀ H ₁₄ O)	CMOF ⊃G 10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O)	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O)	CMOF \supset G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ 6* (C ₉ H ₁₂ O ₃) 7.5(C ₄ H ₈ O)	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂)	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O)	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂) 0.75* (<i>p</i> -C ₈ H ₁₀ O ₂) 0.25* (<i>p</i> -C ₈ H ₁₀ O ₂)
Items Formula	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O)	CMOF ⊃G9 $Cu_4I_4C_{52}H_{28}N_6$ 3* (C ₁₀ H ₁₄ O)	CMOF \supset ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O)	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663 16	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O)	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ 6* (C ₉ H ₁₂ O ₃) 7.5(C ₄ H ₈ O) 4547.01	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ 1* (C ₁₀ H ₁₂ O ₂)	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O)	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂) 0.75* (<i>p</i> -C ₈ H ₁₀ O ₂) 0.25* (<i>p</i> -C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25
Items Formula Mw [gmol-1] System	CMOF $⊃$ G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal	CMOF \supset G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 1949.27 tetragonal	CMOF $⊃G10$ Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal	CMOF ⊃G 13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal	CMOF ⊃G2&G5 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (m-C_8H_{10}O_2)$ $0.75^* (p-C_8H_{10}O_2)$ $0.25^* (p-C_8H_{10}O_2)$ $1.6(C_4H_8O)$ 1890.25 tetragonal
Items Formula Mw [gmol-1] System	CMOF $⊃$ G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4.	CMOF \supset G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4.	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1949.27 tetragonal I4.	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal 14.	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4.	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6^* (C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4.	CMOF ⊃G 13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal I4.	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4.	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂) 0.75* (<i>p</i> -C ₈ H ₁₀ O ₂) 0.25* (<i>p</i> -C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₃ O) 1890.25 tetragonal I4.
Items Formula Mw [gmol-1] System Space group a(Å)	CMOF ⊃G8 $Cu_4I_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4)	CMOF ⊃G9 $Cu_4I_4C_{52}H_{28}N_6$ $3^* (C_{10}H_{14}O)$ 1949.20 tetragonal I4 ₁ 21.9870(3)	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 1.949.27 tetragonal $I4_1$ 21.7043(2)	CMOF $⊃$ G10 Cu ₄ L ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal 14 ₁ 21.9255(4)	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22 1250(3)	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6^* (C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4 ₃ 22.11620(10)	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2)	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4 ₁ 21.8699(3)	CMOF ⊃G2&G5 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (m-C_8H_{10}O_2)$ $0.75^* (p-C_8H_{10}O_2)$ $0.25^* (p-C_8H_{10}O_2)$ $1.6(C_4H_8O)$ 1.890.25 tetragonal $I4_1$ 21.6573(3)
Items Formula Mw [gmol-1] System Space group a(Å) b(Å)	CMOF ⊃G8 $Cu_4I_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4)	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3)	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 1949.27 tetragonal $I4_1$ 21.7043(2) 21.7043(2)	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4)	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22 1250(3)	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6*(C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10)	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2)	CMOF \supset G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3)	CMOF ⊃G2&G5 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (m-C_8H_{10}O_2)$ $0.75^* (p-C_8H_{10}O_2)$ $0.25^* (p-C_8H_{10}O_2)$ $1.6(C_4H_8O)$ 1.890.25 tetragonal $I4_1$ 21.6573(3) 21.6573(3)
Items Formula Mw [gmol–1] System Space group a(Å) b(Å) c(Å)	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10)	CMOF $⊃$ G 9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7)	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42*(S -C ₁₀ H ₁₄ O) 1949.27 tetragonal I4 ₁ 21.7043(2) 21.7043(2) 41.2270(6)	CMOF $⊃G10$ Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11)	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8)	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3)	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal $I4_1$ 21.8628(2) 21.8628(2) 40.9305(8)	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal $I4_1$ 21.8699(3) 21.8699(3) 40.8331(7)	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (m -C ₈ H ₁₀ O ₂) 0.75* (p -C ₈ H ₁₀ O ₂) 0.25* (p -C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25 tetragonal I4 ₁ 21.6573(3) 21.6573(3) 41.2291(9)
Items Formula Mw [gmol–1] System Space group a(Å) b(Å) c(Å) a(°)	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90	CMOF ⊃ent2 Cu ₄ $L_4C_{52}H_{28}N_6$ 1.58*(<i>R</i> -C ₁₀ $H_{14}O$) 1.42* (<i>S</i> -C ₁₀ $H_{14}O$) 1949.27 tetragonal 14 ₁ 21.7043(2) 21.7043(2) 41.2270(6) 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (<i>m</i> -C ₈ H ₁₀ O ₂) 0.75* (<i>p</i> -C ₈ H ₁₀ O ₂) 0.25* (<i>p</i> -C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25 tetragonal I4 ₁ 21.6573(3) 21.6573(3) 41.2291(9) 90
Items Formula Mw [gmol–1] System Space group a(Å) b(Å) c(Å) a(°) β(°)	CMOF $⊃$ G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90	CMOF ⊃G9 $Cu_4I_4C_{52}H_{28}N_6$ $3^*(C_{10}H_{14}O)$ 1949.20 tetragonal $I4_1$ 21.9870(3) 21.9870(3) 40.6983(7) 90 90	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1949.27 tetragonal I4 ₁ 21.7043(2) 21.7043(2) 41.2270(6) 90 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1663.16 141 21.9255(4) 21.9255(4) 40.8385(11) 90 90	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6*(C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5^* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90	CMOF ⊃G2&G5 Cu4I4C52H28N6 1*(m-C8H10Q2) 0.75*(p-C8H10Q2) 0.25*(p-C8H10Q2) 1.6(C4H3Q) 1890.25 tetragonal 141 21.6573(3) 21.6573(3) 41.2291(9) 90
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) c(Å) α(°) β(°) γ(°)	CMOF $⊃$ G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 90	CMOF $⊃$ G 9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3^* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1949.27 tetragonal I4 ₁ 21.7043(2) 21.7043(2) 41.2270(6) 90 90 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 90	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 90	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6^* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90	CMOF ⊃G2&G5 Cu4I4C52H28N6 1* (m-C8H10Q) 0.75* (p-C8H10Q) 0.25* (p-C8H10Q) 1.6(C4H8O) 1890.25 tetragonal 141 21.6573(3) 21.6573(3) 41.2291(9) 90 90
Items Formula Mw [gmol–1] System Space group a(Å) b(Å) c(Å) c(Å) α(°) β(°) γ(°) V(Å)	CMOF ⊃G8 $Cu_4I_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 90 19588.4(8)	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6)	CMOF ⊃ent2 Cu ₄ L ₄ C ₅₂ H ₂₈ N ₆ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 1.42*(S-C ₁₀ H ₁₄ O) 1949.27 tetragonal I4 ₁ 21.7043(2) 21.7043(2) 41.2270(6) 90 90 90 19421.1(5)	CMOF \neg G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal 14 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 90 19632.2(9)	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7)	CMOF ⊃G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ $6*(C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2)	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5)	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 90 19530.2(6)	CMOF ⊃G2&G5 Cu₄I₄C₅2H₂8N6 1* (m-C ₈ H ₁₀ O2) 0.75* (p-C ₈ H ₁₀ O2) 0.25* (p-C ₈ H ₁₀ O2) 1.6(C₄H ₈ O) 1.890.25 tetragonal 14 ₁ 21.6573(3) 21.6573(3) 21.6573(3) 41.2291(9) 90 90 90 19338.0(7)
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å)	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 90 19588.4(8) 0.81	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1949.27 tetragonal I4 ₁ 21.7043(2) 21.7043(2) 41.2270(6) 90 90 90 19421.1(5) 0.81	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1663.16 141 21.9255(4) 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^* (C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81	CMOF ⊃G2&G5 $Cu_4I_4C_{52}H_{28}N_6$ $1*(m-C_8H_{10}O_2)$ $0.75*(p-C_8H_{10}O_2)$ $0.25*(p-C_8H_{10}O_2)$ $1.6(C_4H_8O)$ 1.890.25 tetragonal 14_1 21.6573(3) 21.6573(3) 41.2291(9) 90 90 90 19338.0(7) 0.81
$\begin{tabular}{ c c c c } \hline Items \\ \hline Formula \\ \hline Formula \\ \hline System \\ Space group \\ a(Å) \\ b(Å) \\ c(Å) \\ a(°) \\ \beta(°) \\ \gamma(°) \\ \gamma(°) \\ V(Å) \\ Resolution(Å) \\ Z \end{tabular}$	CMOF \supset G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8	CMOF ⊃ent2 Cu ₄ L ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 21.7043(2) 21.7043(2) 21.7043(2) 41.2270(6) 90 90 90 19421.1(5) 0.81 8	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1663.16 tetragonal 14 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^*(C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81 8	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25 1890.25 tetragonal I4 ₁ 21.6573(3) 21.6573(3) 21.6573(3) 41.2291(9) 90 90 90 19338.0(7) 0.81 8
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm3)$	CMOF ⊃G8 $Cu_4L_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8 1.380	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316	CMOF ⊃ent2 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1.58*(R -C ₁₀ H ₁₄ O) 1.42* (S -C ₁₀ H ₁₄ O) 1.42* (CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1663.16 141 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8 1.125	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6*(C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 90 19529.3(2) 0.81 4 1.546	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81 8 1.129	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25 tetragonal 141 21.6573(3) 21.6573(3) 21.6573(3) 41.2291(9) 90 90 19338.0(7) 0.81 8 1.299
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm^3)$ R_{int}	CMOF ⊃G8 $Cu_4L_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 90 19588.4(8) 0.81 8 1.380 0.0535	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 1.41 $21.7043(2)$ $41.2270(6)$ 90 90 90 90 90 90 90 90 8 1.315 0.0360	CMOF \neg G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8 1.125 0.0396	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6^* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81 8 1.129 0.0745	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4, 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1890.25 tetragonal 141 21.6573(3) 21.6573(3) 41.2291(9) 90 19338.0(7) 0.81 8 1.299 0.0359
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ $\beta(^{\circ})$ $\gamma(^{\circ})$ V(Å) Resolution(Å) Z $\rho(calcg/cm^3)$ R_{int} GOOF	CMOF ⊃G8 $Cu_4L_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.7043(2)$ $21.7043(2)$ $41.2270(6)$ 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6^* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065	CMOF \supset G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4, 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915	CMOF ⊃G2&G5 Cu₄I₄C₅2H₂8N6 1* (m-C ₈ H ₁₀ O2) 0.75* (p-C ₈ H ₁₀ O2) 0.25* (p-C ₈ H ₁₀ O2) 1.6(C₄H ₈ O) 1.890.25 tetragonal 141 21.6573(3) 21.6573(3) 41.2291(9) 90 41.2291(9) 90 19338.0(7) 0.81 8 1.299 0.0359 1.112
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm3)$ R_{int} GOOF Flack	CMOF ⊃G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937 0.090(11)	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018 -0.003(4)	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal 14 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980 0.077(10)	CMOF $⊃$ G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874 0.121(9)	CMOF ⊃G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ $6*(C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065 0.163(7)	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1*(C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024 0.462(15)	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4, 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915 0.092(10)	CMOF ⊃G2&G5 Cu₄I₄C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1.890.25 tetragonal 14 ₁ 21.6573(3) 21.6573(3) 21.6573(3) 41.2291(9) 90 90 90 19338.0(7) 0.81 8 1.299 0.0359 1.112 0.117(8)
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm^3)$ R_{int} GOOF Flack Temp. (K)	CMOF ⊃G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937 0.090(11) 99.98(14)	CMOF ⊃G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3^* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018 -0.003(4) 129.99(11)	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.7043(2)$ $1.7043(2)$ $21.7043(2)$ $41.2270(6)$ 90	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980 0.077(10) 150.00(10)	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874 0.121(9) 99.98(10)	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065 0.163(7) 100.00(10)	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1*(C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024 0.462(15) 150.00(10)	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5^* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915 0.092(10) 99.99(10)	CMOF ⊃G2&G5 Cu₄I₄C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₈ O) 1.890.25 1890.25 1890.25 121.6573(3) 21.6573(3) 21.6573(3) 21.6573(3) 01.0573(3) 141.2291(9) 90 90 19338.0(7) 19338.0(7) 0.0359 1.112 0.117(8) 99.97(15)
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm^3)$ R_{int} GOOF Flack Temp. (K)	CMOF ⊃G8 $Cu_4L_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937 0.090(11) 99.98(14) 0.112(CMOF ⊃G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ $3*(C_{10}H_{14}O)$ 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018 -0.003(4) 129.99(11) 0.0614	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.949.27$ tetragonal 14_1 $21.7043(2)$ $41.2270(6)$ 90 90 <	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 tetragonal I4 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980 0.077(10) 150.00(10) 0.1011	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874 0.121(9) 99.98(10) 0.0820	CMOF ⊃G12 $Cu_8I_8C_{104}H_{56}N_{12}$ $6* (C_9H_{12}O_3)$ $7.5(C_4H_8O)$ 4547.01 tetragonal P4_3 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065 0.163(7) 100.00(10) 0.0242	CMOF ⊃G13 $Cu_4I_4C_{52}H_{28}N_6$ $1^*(C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024 0.462(15) 150.00(10) 0.1222	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915 0.092(10) 99.99(10) 0.1042	CMOF ⊃G2&G5 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C ₄ H ₃ O) 1890.25 tetragonal 141 21.6573(3) 21.6573(3) 21.6573(3) 41.2291(9) 90 41.2291(9) 90 90 19338.0(7) 0.81 8 1.299 0.0359 1.112 0.117(8) 99.97(15)
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) α (°) β (°) γ (°) V(Å) Resolution(Å) Z ρ (calcg/cm ³) R _{int} GOOF Flack Temp. (K) R1 [I > 2\sigma(I)] wP(all d=ta)	CMOF ⊃G8 $Cu_4L_4C_{52}H_{28}N_6$ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937 0.090(11) 99.98(14) 0.1126 0.1866	CMOF ⊃G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ $3*(C_{10}H_{14}O)$ 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018 -0.003(4) 129.99(11) 0.0614 0.1474	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.949.27$ tetragonal 14_1 $21.7043(2)$ $41.2270(6)$ 90 1030 1.030 $-0.011(4)$ $129.98(10)$ 0.0647	CMOF $⊃$ G10 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1* (C ₉ H ₈ O) 0.45(C ₄ H ₈ O) 1663.16 1etragonal 14 ₁ 21.9255(4) 21.9255(4) 40.8385(11) 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980 0.077(10) 150.00(10) 0.1011 0.2204	CMOF \neg G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874 0.121(9) 99.98(10) 0.0829 0.1468	CMOF ⊃G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ $6*(C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 90 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065 0.163(7) 100.00(10) 0.0943 0.2520	CMOF ⊃G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 1^* (C ₁₀ H ₁₂ O ₂) 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024 0.462(15) 150.00(10) 0.1332 0.2062	CMOF ⊃G14 $Cu_4I_4C_{52}H_{28}N_6$ $0.5^* (C_{12}H_{14}O_3)$ $0.45(C_4H_8O)$ 1634.12 tetragonal I4, 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915 0.092(10) 99.99(10) 0.1043 0.2090	CMOF ⊃G2&G5 Cu₄I₄C₅2H₂ ₈ N ₆ 1* (m-C ₈ H ₁₀ O ₂) 0.75* (p-C ₈ H ₁₀ O ₂) 0.25* (p-C ₈ H ₁₀ O ₂) 1.6(C₄H ₈ O) 1890.25 1890.25 1890.25 1890.25 1641.20 190.1 1041.2291(9) 10538.0(7) 1
Items Formula Mw [gmol-1] System Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ V(Å) Resolution(Å) Z $\rho(calcg/cm^3)$ R_{int} GOOF Flack Temp. (K) R1 [I >2 $\sigma(I)$] wR2(all data) F(OOP)	CMOF ⊃G8 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 2.5* (C ₁₀ H ₁₄ O) 2.23(C ₄ H ₈ O) 2034.88 tetragonal I4 ₁ 21.9275(4) 21.9275(4) 40.7399(10) 90 90 90 19588.4(8) 0.81 8 1.380 0.0535 0.937 0.090(11) 99.98(14) 0.1126 0.1866 8034.0	CMOF $⊃$ G9 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 3* (C ₁₀ H ₁₄ O) 1949.20 tetragonal I4 ₁ 21.9870(3) 21.9870(3) 40.6983(7) 90 90 90 19674.7(6) 0.81 8 1.316 0.0511 1.018 -0.003(4) 129.99(11) 0.0614 0.1474 7648 0	CMOF ⊃ent2 $Cu_4I_4C_{52}H_{28}N_6$ $1.58*(R-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.42*(S-C_{10}H_{14}O)$ $1.7043(2)$ $21.7043(2)$ $41.2270(6)$ 90	CMOF ⇒G10 $Cu_4I_4C_{52}H_{28}N_6$ $1*(C_9H_8O)$ $0.45(C_4H_8O)$ 1663.16 1etragonal 14_1 21.9255(4) 21.9255(4) 40.8385(11) 90 90 90 19632.2(9) 0.80 8 1.125 0.0396 0.980 0.077(10) 150.00(10) 0.1011 0.2294 6384.0	CMOF \supset G11 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₄ H ₁₂ O ₃) 8.6(C ₄ H ₈ O) 2232.77 tetragonal I4 ₁ 22.1250(3) 22.1250(3) 22.1250(3) 40.3563(8) 90 90 90 19755.0(7) 0.81 8 1.501 0.0602 0.874 0.121(9) 99.98(10) 0.0829 0.1468 8012.0	CMOF ⊃G12 Cu ₈ I ₈ C ₁₀₄ H ₅₆ N ₁₂ $6* (C_9H_{12}O_3)$ 7.5(C ₄ H ₈ O) 4547.01 tetragonal P4 ₃ 22.11620(10) 22.11620(10) 22.11620(10) 39.9270(3) 90 90 90 19529.3(2) 0.81 4 1.546 0.0689 1.065 0.163(7) 100.00(10) 0.0943 0.2520 7859 0	CMOF ⊃G13 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ $1*(C_{10}H_{12}O_2)$ 1662.76 tetragonal I4 ₁ 21.8628(2) 21.8628(2) 40.9305(8) 90 90 90 90 19564.0(5) 0.81 8 1.129 0.0745 1.024 0.462(15) 150.00(10) 0.1332 0.2962 6384 0	CMOF ⊃G14 Cu ₄ I ₄ C ₅₂ H ₂₈ N ₆ 0.5* (C ₁₂ H ₁₄ O ₃) 0.45(C ₄ H ₈ O) 1634.12 tetragonal I4 ₁ 21.8699(3) 21.8699(3) 40.8331(7) 90 90 90 19530.2(6) 0.81 8 1.112 0.0361 0.915 0.092(10) 99.99(10) 0.1043 0.2089 6364 0	CMOF ⊃G2&G5 Cu4I₄C52H28N6 1* (m-C8H10Q2) 0.75* (p-C8H10Q2) 0.25* (p-C8H10Q2) 1.6(C4H8O) 1890.25 1890.25 1890.25 1890.25 141.2291(9) 90 41.2291(9) 90 41.2291(9) 90 19338.0(7) 0 19338.0(7) 0 19338.0(7) 0 19338.0(7) 0 19338.0(7) 10 10 10 10 10 10 10 10 10 10

Table S2.	The guest	occupancy	in CM	OF⊃guests
-----------	-----------	-----------	-------	-----------

Guest	CMOF	CMOF	$\mathrm{CMOF} \supset$	CMOF	CMOF	CMOF	CMOF	CMOF	$\mathrm{CMOF} \supset$
occupancy	⊃None	⊃G1	G 2	⊃G 3	⊃G 4	⊃G 5	⊃G 6	⊃G 7	ent1
1	0	0	1	2	0	1	1	1	1
0.5	0	2	2	1	1	4	0	0	1
Guest	$CMOF \supset$	CMOF	CMOF	CMOF	CMOF	CMOF	CMOF	CMOF	CMOF
occupancy	G 8	⊃G 9	⊃ent2	⊃G 10	⊃G11	⊃G 12	⊃G 13	⊃G 14	⊃G2&G5
1	1	1	0	0		5	0	0	0
0.75									1
0.5	3	4	6	2	1	2	2	1	2
0.25									1

Table S3 The guest volume and three-dimensional values

Guest	Length (Å)	Width (Å)	Height (Å)	Volume (Å3)	Standard
					Deviation (Å ³)
G 1	7.974	9.869	4.257	335.006	12.632
G 2	5.554	11.107	6.685	412.386	8.136
G 3	9.521	8.046	4.247	325.346	13.255
G 4	7.292	9.309	3.700	251.161	6.879
G 5	6.624	11.583	4.246	325.778	5.466
G 6	11.494	6.674	8.933	685.259	30.941
G 7	10.330	9.972	5.896	607.351	16.458
G 8	9.782	7.075	7.004	484.730	9.358
G 9	10.606	7.016	5.817	432.853	18.457
G 10	7.080	11.081	3.400	266.742	12.115
G11	13.860	7.760	4.229	454.844	8.756
G 12	8.339	11.408	4.257	404.974	10.682
G 13	8.867	11.041	4.246	415.486	15.332
G 14	12.469	8.814	5.436	597.43	8.753
Diallyl fumarate	15.951	7.337	4.231	495.164	13.368
Tetraethylene	18.129	4.616	4.221	353.228	8.452
Methyl jasmonate	11.001	9.800	6.814	734.616	28.352
Isobornyl methacrylate	11.852	7.965	7.797	736.046	32.535

Diallyl fumarate

Tetraethylene glycol

Isobornyl methacrylate

Methyl jasmonate

Table S4. C-H… π intermolecular interactions in CMOF⊃guests

Host-Guest	Х-Н⋯Сg	H…Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G1	C1A-H1A…Cg1 ª	2.89(0)	134	3.61(7)
	C4-H4···Cg2 [♭]	2.77(0)	139	3.54(3)
	С49-Н49…Сg3 °	2.53(0)	167	3.47(2)

Symmetry codes: a -x, 2-y, 1+z; b 1/2-y, 1+x, 3/4+z; c 1/2-x, 5/2-y, 1/2+z; Cg1 is the centroid of N1, C1, C2, C3, C4, C5. Cg2 is the centroid of C7A, C8A, C9A, C10A, C11A, C12A. Cg3 is the centroid of C7B, C8B, C9B, C10B, C11B, C12B.

Host-Guest	Х-Н…Сд	H…Cg(Å)	X-H···Cg(°)	X…Cg(Å)
CMOF ⊃G 2	None			
Host-Guest	Х-Н⋯Сg	H···Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G 3	C180-H180…Cg5 ª	2.98(0)	122	3.58(2)
	С194-Н194…Сдб ^ь	3.27(0)	146	4.10(1)
	C152-H152…Cg7 °	3.54(0)	138	4.30(2)

Symmetry codes: ^a x, y, z; ^b -1+x, y, -1+z; ^c -1+x, -1+y, z; Cg5 is the centroid of C085, C09N, C77 C0AH, C09X, C09B; Cg6 is the centroid of C09E, C058, C61, C088, C095, C097; Cg7 is the centroid of C0AE, C07X, C09A, C09D, C09H, C036.

Host-Guest	Х-Н⋯Сg	H…Cg(Å)	X-H···Cg(°)	X…Cg(Å)
CMOF ⊃G 4	C8A-H8AB…Cg8 a	3.48(0)	137	4.23(7)

Symmetry codes: a -3/2+x, 1/2+y, 1/2+z; Cg8 is the centroid of N5, C45, C44, C43, C47, C46.

Host-Guest	X-H···Cg	H···Cg(Å)	X-H⋯Cg(°)	X⋯Cg(Å)
CMOF ⊃G 5	C1E-H1EB…Cg9 ^a	3.01(0)	151	3.87(7)
	C3C-H3C····Cg10 b	2.81(0)	168	3.72(4)
	C8B-H8BB····Cg11 °	2.65(0)	115	3.17(5)

Symmetry codes: a -1+x, 1+y, 1+z; b -3/2+y, 2-x, 3/4+z; c -3/2+y, 2-x, 3/4+z; Cg9 is the centroid of N5, C27, C28, C29, C30, C31; Cg10 is the centroid of C2A, C3A, C4A, C5A, C6A, C7A; Cg11 is the centroid of C2C, C3C, C4C, C5C, C6C, C7C

Host-Guest	Х-Н…Сд	H···Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G 6	C53-H53A…Cg12 ª	3.11(0)	137	3.86(4)
C	2/2 = 1/4 = C = 12 = 4 = - = + = 14	FND COD COD COA CO	5 (2)(-	

Symmetry codes: a -1+y, 3/2-x, 1/4+z; Cg12 is the centroid of N2, C22, C23, C24, C25, C26;

Host-Guest	Х-Н…Сд	H···Cg(Å)	X-H···Cg(°)	X…Cg(Å)
CMOF ⊃G7	C10A-H10C…Cg13 a	3.33(0)	132	4.06(3)

Symmetry codes: a -1/2-y, 1+x, 3/4+z; Cg13 is the centroid of N5, C27, C28, C29, C30, C31;

Host-Guest	Х-Н…Сд	H…Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃ ent1	C11B-H11D…Cg14 ª	3.49(0)	134	4.22(5)
	C12A-H12C····Cg15 ^b	3.36(0)	135	4.12(3)

Symmetry codes: a -1/2-x, 5/2-y, 1/2+z; b -x, 2-y, 1+z; Cg14 is the centroid of C8, C9, C10, C11, C13, C14; Cg15 is the centroid of N6, C47, C48, C49, C50, C51;

Host-Guest	Х-Н⋯Сg	H···Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G 8	C3A-H3AB…Cg16 ª	3.28(0)	128	3.95(4)

C10C-H10CA···Cg17 ^b	2.81(0)	147	3.67(4)
C2B-H2BC···Cg18 °	2.99(0)	133	3.72(4)

Symmetry codes: a -1/2-x, 3/2-y, 1/2+z; b -y, 3/2+x, 1/4+z; c -x, 2-y, z; Cg16 is the centroid of N5, C27, C28, C29, C30, C31; Cg17 is the centroid of C40, C41, C42, C43, C44, C45; Cg18 is the centroid of N2, C22, C23, C24, C25, C26;

Host-Guest	X-H…Cg	H…Cg(Å)	X-H···Cg(°)	X…Cg(Å)
CMOF ⊃G 9	C1A-H1AA…Cg19 ^a	2.97(0)	131	3.69(7)

Symmetry codes: a y, 3/2-x, 1/4+z; Cg19 is the centroid of C14, C15, C16, C17, C18, C19.

Host-Guest	Х-Н…Сд	H…Cg(Å)	X-H⋯Cg(°)	X⋯Cg(Å)
$CMOF \supset$	C1C-H1CA…Cg20 ^a	2.73(0)	153	3.61(3)
ent2				

Symmetry codes: ^a -y, 1/2+x, 1/4+z; Cg20 is the centroid of C8, C9, C10, C11, C12, C13.

Host-Guest	X-H···Cg	H…Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G 10	C9A-H9A…Cg21 ª	2.74(0)	138	3.48(2)
	C4-H4···Cg22 [♭]	3.02(0)	144	3.81(2)
	C43-H43…Cg22 ^b	2.97(0)	163	3.87(2)

Symmetry codes: a 1/2+x, 1/2+y, -1/2+z; b 1/2+x, 1/2+y, -1/2+z; Cg21 is the centroid of N1, C1, C2, C3, C4, C5. Cg22 is the centroid of C4B, C5B, C6B, C7B, C8B, C9B.

Host-Guest	Х-Н…Сд	H…Cg(Å)	X-H⋯Cg(°)	X⋯Cg(Å)
CMOF ⊃G11	C4-H4…Cg23 a	2.63(0)	149	3.48(1)
	C5A-H5A····Cg24 ^b	2.89(0)	124	3.50(2)

Symmetry codes: a -1+x, y, 1+z; b -3/2+y, 1-x, 3/4+z; Cg23 is the centroid of C9A, C10A, C11A, C12A, C13A, C14A. Cg24 is the centroid of N1, C1, C2, C3, C4, C5.

Host-Guest	Х-Н⋯Сg	H…Cg(Å)	X-H⋯Cg(°)	X…Cg(Å)
CMOF ⊃G12	C8E-H8EC····Cg25 a			

Symmetry codes: a -1+x, y, 1+z; Cg25 is the centroid of C2B, C3B, C4B, C5B, C6B, C7B.

Host-Guest	Х-Н…Сд	H···Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃G 13	C61-H61…Cg26 a	2.89(0)	116	3.55(4)
	С37-Н37…Сg27 ь	3.16(0)	117	3.69(3)

Symmetry codes: a -1+x, y, z; b -y, 1/2+x, 1/4+z; Cg26 is the centroid of N6, C27, C28, C29, C30, C31; Cg27 is the centroid of C2A, C3A, C4A, C5A, C6A, C7A.

Host-Guest	Х-Н⋯Сg	H…Cg(Å)	X-H···Cg(°)	X…Cg(Å)
CMOF ⊃G 14	C2-H2···Cg28 ª	3.08(0)	119	3.64(2)

Symmetry codes: ^a -1+x, 1+y, 1+z; Cg28 is the centroid of C3A, C4A, C5A, C6A, C7A, C8A.

Host-Guest	Х-Н⋯Сg	H···Cg(Å)	X-H···Cg(°)	X⋯Cg(Å)
CMOF ⊃ G 2 & G 5	C76-H76…Cg29 ^a	3.08(0)	143	3.91(3)
	C68-H68BCg30 ^b	2.86(0)	166	3.80(3)

Symmetry codes: a -1/2-y, -1+x, 3/4+z; b -1+x, y, z; Cg29 is the centroid of N1, C1, C2, C3, C4, C5; Cg30 is the centroid of N2, C48, C49, C50, C51, C52;

Host-Guest	Interactions	D–H	H…A	D···A	D-H···A	Symmetry code
		(Å)	(Å)	(Å)	(deg)	
CMOF ⊃G1	C28-H28 O1A	0.95	2.59(7)	3.51(8)	162	1/2-y, 1+x, 3/4+z
	C17-H17O1B	0.95	2.76(9)	3.62(10)	151	1/2-x, 5/2-y, 1/2+z
CMOF ⊃G 2	С9-Н9О1В	0.93	3.01(2)	3.83(3)	148	-3/2+x, 1/2+y, 1/2+z
	С30-Н30О1В	0.93	2.73(2)	3.52(3)	143	-3/2+x, 1/2+y, 1/2+z
	C24-H24 O2C	0.93	3.04(4)	3.78(5)	139	1/2-x, 3/2-y, 1/2+z
	C17-H17O1A	0.93	2.65(2)	3.37(2)	134	-1/2+x, 1/2+y, 1/2+z
CMOF ⊃G 3	None					
CMOF ⊃G 4	C4-H4O1A	0.93	2.55(5)	3.44(6)	160	3/2+y, 2-x, 3/4+z
	C5-H5O1A	0.93	2.91(5)	3.47(6)	120	-3/2+y, 2-x, 3/4+z
	C23-H23 O1E	0.93	2.62(5)	3.43(5)	146	-1/2+x, 1/2+y, 1/2+z
CMOF ⊃G 5	С52-Н52 О2А	0.93	2.75(4)	3.41(5)	129	-3/2+y, 2-x, 3/4+z
	С49-Н49 О2В	0.93	2.53(3)	3.37(4)	151	-3/2+y, 2-x, 3/4+z
CMOF ⊃G 6	С23-Н23 О1	0.93	2.63(3)	3.09(3)	111	-1/2-x, 3/2-y, 1/2+z
	С43-Н43 О2	0.93	2.63(4)	3.54(5)	165	-1/2-x, 3/2-y, 1/2+z
CMOF ⊃G 7	С23-Н23 О1А	0.95	2.68(2)	3.19(3)	114	-1+y, 3/2-x, 1/4+z
	С35-Н35 О2А	0.95	2.60 (3)	3.52(4)	163	-1+y, 3/2-x, 1/4+z
CMOF⊃ent1	C17-H17 O1A	0.95	2.35(2)	3.27(3)	164	-1/2-x, 5/2-y, 1/2+z
	С49-Н49 О2А	0.95	2.61(2)	3.08(2)	111	-1/2-x, 5/2-y, 1/2+z
	С30-Н30 О1В	0.95	2.83(4)	3.77(4)	171	-1/2+y, 2-x, 3/4+z
	С10-Н10 О2В	0.95	3.18(4)	3.62(4)	110	-1/2+y, 2-x, 3/4+z
CMOF ⊃G 8	C4D-H4D O1C	0.98	2.51(3)	3.29(4)	134	-y, 3/2+x, 1/4+z
	C9A-H9AAO1D	0.97	2.76(2)	3.69(4)	161	-1+y, 3/2-x, 1/4+z
CMOF ⊃G 9	C6A-H6AA O1B	0.99	2.69(2)	3.66(4)	162	1/2+x, 1/2+y, 1/2+z
	C4C-H4CAO1B	0.99	2.87(2)	3.79(3)	155	1/2-x, 5/2-y, 1/2+z
	C6C-H6CAO1D	0.99	3.06(3)	3.65(5)	120	1-y, 1/2+x, 1/4+z
	C10E-H10JO1C	0.99	3.15(4)	4.06(8)	154	1-x, 2-y, z
	C16-H16 O1E	0.99	2.73(3)	3.59(4)	150	x, 1+y, z
CMOF⊃ent2	C28-H28 O1D	0.93	3.03(2)	3.93(2)	163	-y, 1/2+x, 1/4+z
	С65-Н65 О1С	0.99	2.73(2)	3.51(6)	136	-y, 1/2+x, 1/4+z
	C4C-H4CBO1A	0.96	3.09(4)	3.72(6)	124	1/2-x, 3/2-y, 1/2+z
	C51-H51 O1A	0.93	2.99(5)	3.65(5)	129	1/2-x, 3/2-y, 1/2+z
	C4A-H4AAO1B	0.96	2.74(4)	3.35(8)	122	-1+y, 5/2-x, 1/4+z
	C9B-H9BBO1E	0.96	2.34(3)	3.21(5)	151	-1+y, 5/2-x, 1/4+z
CMOF ⊃G10	C6A-H6A O1B	0.93	2.94(5)	3.49(6)	120	1/2+x, 1/2+y, -1/2+z
CMOF ⊃G11	C50-H50 O1A	0.95	3.16(3)	4.06(3)	158	-1+x, y, 1+z
	С50-Н50 О2А	0.95	3.39(4)	3.85(4)	112	-1+x, y, 1+z
CMOF ⊃G 12	C65-H65O1A	0.95	2.60 (2)	3.29 (2)	130	1-y, -1+x, -1/4+z
	C8D-H8DAO3A	0.98	3.09 (2)	3.61 (5)	114	-1+x, y, z
	C8A-H8ABO3D	0.98	2.71(3)	3.54 (5)	142	-x, 2-y, -1/2+z
	С56-Н56О2В	0.95	2.48(2)	3.40 (3)	162	1-y, -1+x, -1/4+z
	O1B-H1B O3E	0.83	2.28(3)	2.91(4)	132	(1+x, y, z)
	C101-H101O2C	0.95	2.82(4)	3.69 (4)	152	1-y, x, -1/4+z
	C1C-H1CAO3G	0.99	2.79(3)	3.73 (5)	159	x, 1+y, z

Table S5. Geometric parameters of the O–H…O and C–H…O hydrogen bonding interactions in CMOF⊃guests

	C13-H13 O2D	0.95	2.62(3)	3.52 (3)	159	1-x, 1-y, 1/2+z
	C6G-H6G O3D	0.95	3.10 (3)	3.78 (4)	129	-y, 1+x, -1/4+z
	C7E-H7E O2G	0.95	2.68 (4)	3.52(4)	148	-y, x, -1/4+z
	C49-H49 O3F	0.95	2.42 (2)	3.32 (4)	159	1+y, 1-x, 1/4+z
	01F-H1F 01G	0.84	2.09 (3)	2.80 (4)	142	-x, 1-y, -1/2+z
CMOF ⊃G 13	C43-H43 O1B	0.95	2.61(6)	3.52(6)	161	-3/2+x, 1/2+y, 1/2+z
CMOF ⊃G14	None					
$\mathrm{CMOF} \supset \mathrm{G2}$	С23-Н23 Об	0.95	2.59(2)	3.44(3)	150	-1+y, 1/2-x, 1/4+z
&G 5	С16-Н16 О4	0.95	2.39(3)	3.32(3)	164	-3/2+x, -1/2+y, 1/2+z
	С50-Н50 О8	0.95	2.63(3)	3.48(4)	148	-y, -1/2+x, 1/4+z
	C4-H4 O2	0.95	2.48(2)	3.32(3)	147	1/2-x, -1/2-y,
						1/2+z

Table S6 Details for the refinement restrain & constrain

Host-guest complex	Refinement restrains & constrains
CMOF	RIGU, DFIX
CMOF ⊃G1	RIGU, DFIX, ISOR, DANG, SADI, SIMU, FLAT
CMOF ⊃G 2	RIGU, DFIX, SADI, DANG, ISOR, FLAT
CMOF ⊃G 3	SIMU, FLAT, DFIX, DELU, RIGU
CMOF ⊃G 4	ISOR, RIGU, DFIX, DELU, SIMU, EADP
CMOF ⊃G 5	RIGU, DFIX, SIMU, DANG, EADP, ISOR, SADI, FLAT
CMOF ⊃G 6	ISOR, SADI, DFIX, EADP, RIGU
CMOF ⊃G7	DFIX, RIGU, ISOR
CMOF ⊃ent1	DFIX, RIGU, EADP, DANG, SIMU, DELU, SADI, ISOR
CMOF ⊃G 8	RIGU, DFIX, DANG, ISOR, DELU, SIMU, EADP
CMOF ⊃G 9	DFIX, RIGU, ISOR, DANG, SADI
CMOF ⊃ent2	RIGU, SADI, DFIX, ISOR, EADP, DANG, SIMU, DELU
CMOF ⊃G10	RIGU, DFIX, DANG, EADP, SIMU, FLAT
CMOF ⊃G11	ISOR, RIGU, DANG, DFIX, DELU, SIMU, EADP, FLAT
CMOF ⊃G 12	DFIX, DANG, RIGU, SIMU, DELU, ISOR, EADP
CMOF ⊃G 13	DFIX, RIGU, SIMU, FLAT, ISOR, SADI
CMOF ⊃G14	DFIX, DANG, SADI, RIGU, ISOR, EADP
CMOF ⊃G2&G5	DFIX, RIGU, ISOR, RIGU, SADI