Supporting Information

High Ionic Conductivity of Flexible Solid-State Composite Electrolyte for Lithium-Ion Battery

Authors: Yu-Huei Song, Yu-Ching Chen, En-Ci Lin, Tzu Yun Liang, Che Ya Wu, Ai-

Yin Wang, Han-Yi Chen, and Jyh Ming Wu*

Department of Materials Science and Engineering, National Tsing Hua University,

101, Section 2 Kuang Fu Road, Hsinchu 300, Taiwan.

*: Corresponding Author: J. M. Wu, email:jmwuyun@gapp.nthu.edu.tw

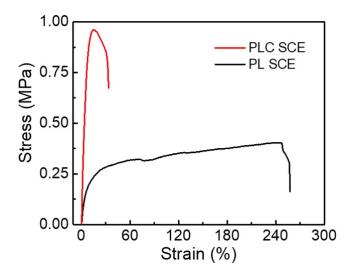


Figure S1. The stress-strain curves of PLC SCE and PL SCE.

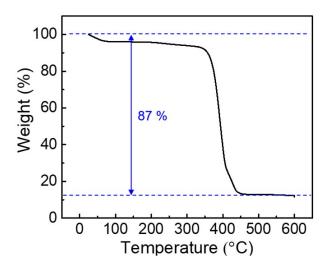


Figure S2. TGA curves of PLC SCE.

Video #1

Molecular dynamics simulations: Ion diffusion behavior was investigated using the mean square displacement of Li-ion movement in an electrolyte incorporating CNF-A, CNF-B, and CNF-C spanning the time range from 0 ps to 1500 ps.

Video #2

Conduct fire resistance tests of PL SCE and PLC SCE to observe their flammability.

Video #3

Failure risk of the battery cell tests: Utilizing PLC SCE as the electrolyte to evaluate the battery underwent folding, nail penetration, and cutting.

Tabe S1

Sample	t_{Li} +	Initial Current (i_{θ})	Steady-State Current (i _s)	Applied Potential (ΔV)	Initial Resistance (R0)	Steady-State Resistance (R _s)
PLC SCE	0.47	0.15 A	0.07 A	10 mV	100 Ω	150 Ω