Revealing the Synergistic Effect of LiF and Li₃N in Solid Electrolyte Interphase for Stable Lithium Metal batteries via In-Situ Electrochemical Atomic Force Microscope

Shuwei Wang^a, Jianxun Zhang^a, Lihan Zhang^{b*}, Xiaojing Li^c, Rui Zhao^c, Yuanming Liu^c, Zile Wang^a, Xuewei Lu^a, Yan Xin^a, Huajun Tian^{a*}, Feiyu Kang^c, Baohua Li^{c*}

a Key Laboratory of Power Station Energy Transfer Conversion and Systems Ministry of Education, North China Electric Power University, Beijing 102206, China b Beijing Key Laboratory of Microstructure and Properties of Solids Institute of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China

c Shenzhen Key Laboratory on Power Battery Safety Research and Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China

Corresponding Authors: E-mail: zhanglh06@bjut.edu.cn E-mail: Huajun.Tian@ncepu.edu.cn E-mail: libh@sz.tsinghua.edu.cn

Figure S1. Voltage capacity profiles of different cycles for plating capacities of 2.0 mAh cm⁻² in different electrolytes.

Figure S2. Top view (a-b) and cross view (b) SEM images of Li metal deposited at 1.0 mA cm^{-2} for 2 h (2.0 mAh cm⁻²) after plating in pure electrolyte.

Figure S3. SEM images of Li metal deposited at 1.0 mA cm⁻² for 2 h (2.0 mAh cm⁻²) after plating in FEC electrolyte with low magnifications.

Figure S4. SEM images of Li metal deposited at 1.0 mA cm⁻² for 2 h (2.0 mAh cm⁻²) after plating in LiNO₃ electrolyte with low magnifications.

Figure S5. SEM images of Li metal deposited at 1.0 mA cm⁻² for 2 h (2.0 mAh cm⁻²) after plating in FEC-LiNO₃ electrolyte with low magnifications.

Figure S6. XPS Li 1s depth profiles of the SEIs after Li plating and stripping process in pure electrolyte.

Figure S7. XPS C 1s depth profiles of the SEIs after Li plating and stripping process in pure electrolyte (a, e), FEC electrolyte (b, f), $LiNO_3$ electrolyte (c, g) and FEC-LiNO₃ electrolyte (d, h) with different depth of SEIs due to Ar⁺ sputtering (0s, 30s, 60s, 180s and 360s).

Figure S8. XPS F 1s depth profiles of the SEIs after Li plating and stripping process in FEC electrolyte (a, c) and FEC-LiNO₃ electrolyte (b, d) with different depth of SEIs due to Ar^+ sputtering (0s, 30s, 60s, 180s and 360s).

Figure S9. AFM and modulus images of SEI on Li metal after plating at 1.0 mA cm^{-2} for 2 h (2.0 mAh cm⁻²) and stripping to 1V in pure electrolyte.

Figure S10. The LSV curve between 0-1.0 V at a scan rate of 0.1 mVs⁻¹.

Figure S11. In situ AFM images of Li metal nucleation and growth. Morphology of the Cu foil during galvanostatic discharge at 1.0 mA cm⁻² for 18 s (0.005 mAh cm⁻²), 72 s (0.02 mAh cm⁻²), 180 s (0.05 mAh cm⁻²) and 1080 s (0.3 mAh cm⁻²) in pure LiBOB-based electrolyte without any LiNO₃ or FEC additives.

Figure S12. The corresponding height curves in corresponding to the marked regions in Figure S11b in pure LiBOB-based electrolyte without any LiNO₃ or FEC additives.