Supporting Information for

Porphyrin-Containing Conjugated Microporous Polymer with Gradient Asymmetric Design for Efficient Oxygen Reduction

Kunpeng Zheng,[‡]^a Maorong Wang,[‡]^a Binbin Wang,^{*}^a Meilong Wang,^a Zhong Wang^b and Xiaojing Long^{*}^a

^aState Key Laboratory of Bio-fibers and Eco-textiles, Collaborative Innovation Center of Shandong Marine Biobased Fibers and Ecological textiles, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, P. R. China.

^bKey Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China

* To whom correspondence should be addressed. E-mail: Binbin Wang (15689986013@163.com); Xiaojing Long (longxj@qdu.edu.cn)

Contents:

- 1. Structural and morphology characterization
- 2. Electrochemical performance
- 3. NMR spectra

1. Structural and morphology characterization

Fig. S1 Thermogravimetric analysis (TGA) of **PPA-BB**, **PPA-BT** and **PPA-BN**. They show good thermal stability with thermal decomposition temperature (Td) at 15% weight loss of 483 °C for **PPA-BB**, 466 °C for **PPA-BT**, and 440 °C for **PPA-BN**.

Fig. S2 Top View of model compounds of **PPA-BB**, **PPA-BT**, **PPA-BN**.

Fig. S3 SEM images of pure PPA-BB, PPA-BT, and PPA-BN.

Fig. S4 a) Powder X-ray diffraction patterns of **PPA-BB**, **PPA-BT**, and **PPA-BN**. b) EIS spectra of **PPA-BB**/rGO, **PPA-BT**/rGO, **PPA-BN**/rGO.

Fig. S5 FT-IR of **PPA-BB** before and after treatment under 6.0 M KOH, 6.0 M HCl, ethanol and acetone for 3 days.

Fig. S6 FT-IR of **PPA-BT** before and after treatment under 6.0 M KOH, 6.0 M HCI, ethanol, and acetone for 3 days.

Fig. S7 FT-IR of **PPA-BN** before and after treatment under 6.0 M KOH, 6.0 M HCl, ethanol, and acetone for 3 days.

2. Electrochemical performance

Fig. S8 LSV curves of **PPA-BB**/rGO from 400 to 2500 rpm.

Fig. S9 LSV curves of **PPA-BT**/rGO from 400 to 2500 rpm.

Fig. S10 LSV curves of **PPA-BN**/rGO from 400 to 2500 rpm.

Fig. S11 CV curves of **PPA-BB**/rGO with the scan rate from 10 mV s⁻¹ to 100 mV s⁻¹ .

Fig. S12 CV curves of **PPA-BT**/rGO with the scan rate from 10 mV s⁻¹ to 100 mV s⁻¹.

Fig. S13 CV curves of **PPA-BN**/rGO with the scan rate from 10 mV s⁻¹ to 100 mV s⁻¹.

Fig. S14 Discharge polarization curve and corresponding power density plot of **PPA-BB**/rGO, **PPA-BT**/rGO, and **PPA-BN**/rGO.

Fig. S15 Discharge curves of **PPA-BB**/rGO, **PPA-BT**/rGO, and **PPA-BN**/rGO based ZABs at different current densities (25, 50, 100, 200 mA cm⁻²).

Fig. S16 Galvanostatic discharge curve of **PPA-BB**/rGO, **PPA-BT**/rGO, and **PPA-BN**/rGO based ZABs (6.0 M KOH electrolyte).

Fig. S17 Theoretical ORR catalytic process of active site-5 in **PPA-BN**.

Site	1	2	3	4	5	6
Overpotential	1.85	3.12	1.01	0.74	0.71	0.93
riangle G1	0.21	1.36	0.81	0.56	0.71	0.93
riangleG2	-2.44	-3.59	-1.58	-1.39	-0.79	-1.02
riangleG3	1.85	3.12	1.01	-0.74	-0.63	0.45
G4	-0.38	-0.89	-0.24	0.09	0.71	-0.36

Table S1. The free energy values of different sites in **PPA-BN**.

Table S2. The free energy values of different sites in **PPA-BT**.

Site	2	3	4	5	6
Overpotential	1.32	1.21		0.78	0.77
riangle G1	0.88	0.93		0.49	0.72
riangleG2	-1.89	-1.71		-0.58	-1.31
riangleG3	1.32	1.21		-0.70	0.77
∆G4	-0.32	-0.43		0.78	-0.18

Table S3. The free energy values of different sites in **PPA-BB**.

Site	2	3	4	5	6	
Overpotential	1.29	1.01	1.16	1.12	1.32	
riangle G1	1.29	1.01	1.16	1.12	1.32	
riangleG2	-1.47	-1.02	-1.20	-1.12	-1.11	
riangleG3	0.90	0.64	0.66	-0.67	0.61	
riangleG4	-0.73	-0.63	-0.60	0.67	-0.83	

3. NMR spectra

Fig. S19. ¹H NMR spectrum of BT.

Fig. S20. ¹H NMR spectrum of BN.