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Experimental section
Sample synthesis
High-purity Pb (99.999%, particles, Zhongnuo), Se (99.999%, particles, Zhongnuo), Ge (99.999%, 
particles, Zhongnuo), Cu (99.999%, particles, Zhongnuo), and S (99.999%, particles, Zhongnuo) 
were weighed according to the nominal composition (Pb0.995Sb0.005Se)1-x(GeS)x (x = 0-0.12) and 
Cuy(PbSe)0.9(GeS)0.1 (y = 0.002-0.005) and placed into quartz tubes, which were flame-welded at 
10-4 Torr. These mixed particles were treated by melting–quenching by slowly raising to 1423 K, 
holding for 6 hours and subsequently quenching and cooling using ice-water. To enhance the 
stability of the samples, the quenched ingots were annealed at 873 K for 48 hours. The obtained 
products were hand-ground in an agate motar for 10 minutes to a fine powder, and then densified 
by the hot pressing (HP) method at 923 K under a uniaxial pressure of 45 MPa for 25 minutes. After 
hot pressing, some cylindrical samples with a relative density of at least 96% and a diameter of 12.7 
mm were obtained.

Materials Performance Characterization
The powder X-ray diffraction patterns were recorded with Cu Kα radiation. Scanning electron 
microscope (SEM) equipped with energy-dispersive spectroscopy (EDS) was used to characterize 
surface morphology and qualitative and quantitative analysis of composition. The electrical 
conductivity σ and Seebeck coefficient S were measured by CTApro measurement system (Beijing 
Cryoall Science and Technology Co., Ltd. China). The Hall coefficient, which was closely related 
to carrier concentration and mobility, was measured using the van der Pauw technique under a 
reversible magnetic field of 1.5 T. The thermal conductivity (κtotal) was calculated by κ=dCpD, 
where D is the thermal diffusivity measured by a laser flash technique with the Netzsch LFA467 
system, Cp is the heat capacity estimated by Cp(kB/atom)=3.07+4.7(T/K-300)/10000.1, 2 Ignoring the 
bipolar thermal conductivity (κbip), the lattice thermal conductivity (κl) was directly obtained by 
subtracting the electronic conductivity (κe) from the κtotal, the κe was calculated by the Wiedemann-
Franz relationship, κe =LT/ρ, where L is the Lorentz number.3 L was derived with the single 
parabolic band (SPB) model.4

Computational details
Electrical transport modeling
The density of state mass m* and Lorenz number L were calculated based on single parabolic band 
(SPB) model by the following equations5:
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Here, kB is the Boltzmann constant, Fn is the Fermi integral, and the reduced chemical potential is
given by ξ = EF/(kBT), where EF is the Fermi energy.

Thermal transport modeling
The lattice thermal conductivity (κL) of alloys was calculated by the modified Debye-Callaway
model,6 which can be expressed by the equation (6).
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Here, 𝜐 is the average speed of phonon, ħ is the reduced Planck constant, Θis the Debye 
temperature, x is the relation of ħω/kBT, ω is the phonon frequency, and τtot is the total phonon 
scattering relaxation time. τtot can be attributed to scattering from various mechanisms such as 
normal (N) and Umklapp (U) processes, point defects (PD), nanoprecipitates (NP), boundaries (B), 
dislocation cores (DC), and dislocation strains (DS) according to the Matthiessen’s equation 
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Normal phonon scattering
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Point defect phonon scattering
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Precipitates scattering
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Dislocation scattering that includes both dislocation core (τDC) and dislocation strain(τDS) scattering.
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In above equations,  is the average atomic volume,  is the average atomic mass, γ is the Grüneisen 𝑉 𝑀

parameter, AN is the ratio between normal process and Umklapp phonon scattering, ND is the number 
of dislocations (or stacking faults) crossing a line of unit length, BD is the magnitude of the Burgers 
vector of the dislocation.



Supplementary Figures
Figure S1. Crystal structure. Room temperature lattice parameters for (a) (Pb0.995Sb0.005Se)1-x(GeS)x 
and (b) Cuy(PbSe)0.9(GeS)0.1 samples.



Figure S2. The back-scattered electron image and corresponding energy dispersive x-ray 
spectroscopy (EDS) mapping for (a) Pb0.995Sb0.005Se and (b) (Pb0.995Sb0.005Se)0.9(GeS)0.1 samples.



Figure S3. The grain boundary of Cu0.004(PbSe)0.9(GeS)0.1 sample and corresponding EDS line scan.



Figure S4. (a) The carrier concentration n and carrier mobility μH in room temperature. (b) The 
temperature dependent lattice thermal conductivity κL. 



Figure S5. The room-temperature Hall carrier mobility and concentration of Cuy(PbSe)0.9(GeS)0.1 
compared with (Pb0.995Sb0.005Se)0.9(GeS)0.1. 
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Figure S6. The thermal diffusivity and heat capacity of Cuy(PbSe)0.9(GeS)0.1 and 
(Pb0.995Sb0.005Se)1-x(GeS)x.
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Figure S7. The Grain size frequency distribution histogram of (Pb0.995Sb0.005Se)0.9(GeS)0.1 and 
Cu0.004(PbSe)0.9(GeS)0.1. 
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Figure S8. The thermoelectric properties of (PbSe)0.9(GeS)0.1: (a) electrical conductivity, σ; (b) 
Seebeck coefficient, S; (c) total, electrical and lattice thermal conductivity, κtot, κele and κlat; (d) 
figure of merit, zT.
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Supplementary Tables
Table S1. Parameters adopted in the Debye-Callaway Model Simulation.

Parameters Values

Lattice constant a,b and c (Å)  a,b,c=6.085 

Average atomic mass M (kg) 2.227410-25 

 Average atomic mass volume V0 (m3) 2.862510-29 

Boltzmann constant KB (J/K) 1.3810-23 

Grüneisen parameter  1.78

Point defect scattering parameter  1.947710-1

Average sound velocity  (m/s) 26149

Longitudinal velocity  L (m/s) 31509

Transverse velocity  T (m/s) 16009

Debye temperature  (K) 13910

Ratio of N- to U- processes β 411

Phenomenological parameter εi 6412



Table S2. The density of Cuy(PbSe)0.9(GeS)0.1 and (Pb0.995Sb0.005Se)1-x(GeS)x. 
Sample Density (g cm-3)

Cu0.002(PbSe)0.9(GeS)0.1 7.711
Cu0.003(PbSe)0.9(GeS)0.1 7.701
Cu0.004(PbSe)0.9(GeS)0.1 7.664
Cu0.005(PbSe)0.9(GeS)0.1 7.651

Pb0.995Sb0.005Se 8.282
(Pb0.995Sb0.005Se)0.98(GeS)0.2 8.134
(Pb0.995Sb0.005Se)0.96(GeS)0.4 8.057
(Pb0.995Sb0.005Se)0.94(GeS)0.6 7.996
(Pb0.995Sb0.005Se)0.92(GeS)0.8 7.921
(Pb0.995Sb0.005Se)0.9(GeS)0.1 7.819

(Pb0.995Sb0.005Se)0.88(GeS)0.12 7.769
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