Exploring KTiPO₄F as an anode material for potassium-ion batteries

Vahid Ramezankhani,^{*,a} Nikita D. Luchinin,^b Sergey N. Marshenya,^b Maxim V. Zakharkin,^c Alexander A. Golubnichiy,^b Anatolii V. Morozov,^b Olga Emilianova,^b Keith J. Stevenson,^c Evgeny V. Antipov,^{b,c} Artem M. Abakumov,^b and Stanislav S. Fedotov^{*,b}

^a Electrochemical Society Member

^b Skoltech Center for Energy Science and Technology, Skolkovo Institute of Science and Technology, Nobel str. 3, Moscow 121205, Russia.

^c Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1/3, Moscow, 119991, Russia

sample			
number	K, at.%	Ti, at.%	P, at.%
1	31.17	34.42	34.41
2	29.50	35.25	35.25
3	30.67	34.67	34.66
4	29.5	35.25	35.25
5	30.63	34.69	34.68
6	29.29	35.35	35.36
7	31.46	34.27	34.27
8	31.32	34.35	34.34
9	32.19	33.9	33.91
10	32.09	33.95	33.96
11	32.03	33.99	33.99
12	33.48	33.26	33.26
13	31.78	34.11	34.11
14	25.76	37.12	37.12
15	33.08	33.46	33.45
16	33.48	33.27	33.26
17	31.21	34.4	34.39
18	32.27	33.87	33.86
19	35.95	32.03	32.02
20	31.26	34.38	34.37
21	29.97	35.01	35.02
22	29.48	35.26	35.26
23	29.07	35.47	35.46
24	29.36	35.32	35.32
25	35.46	32.27	32.27
Avg.	31.26	34.37	34.37
Std. error	0.4	0.2	0.2

Table S1. EDX elen	nental composition of the pristine po	wder
sample		

Fig. S1 FTIR spectrum of pristine KTPF powder in the range of 4000-400 cm⁻¹ range (Inset: the enlarged spectrum in the range of 1200-400 cm⁻¹).

Table S2. The comparison of potassium atom position, fraction, and thermal displacement of the current study (the black colour) with the previous report (the red colour).¹

Atoms	X, Å	Y, Å	Z, Å	Fraction	U _{iso} (Ų)
K1	0.3762(7)	0.7786(1)	0.3057(9)	0.709(5)	0.019(7)
K1 [′]	0.4122(7)	0.8524(13)	0.4428(7)	0.260(7)	0.014(4)
К2	0.1130(9)	0.6582(13)	0.0235(11)	0.176(6)	0.040(2)
К2_	0.0892(3)	0.6873(5)	0.1659(5)	0.300(7)	0.045(4)
К2'_	0.1093(2)	0.7230(3)	0.0733(5)	0.576(7)	0.017(3)
К1	0.3789(5)	0.7798(9)	0.3045(8)	0.732(7)	0.016(2)
K1 [′]	0.3999(17)	0.830(3)	0.4330(19)	0.268(7)	0.016(2)
К2	0.086(2)	0.632(5)	-0.012(3)	0.151(10)	0.033(3)
К2_	0.0875(13)	0.703(3)	0.158(2)	0.264(13)	0.033(3)
K2'_	0.01051(8)	0.7258(17)	0.0678(12)	0.585(17)	0.033(3)

Table S3. Atomic positions, occupancies, and ADPs for $KTiPO_4F$

Atoms		x, Å	y, Å	z, Å	Fraction	U _{iso} , Ų
K1	К	0.3762(7)	0.7786(1)	0.3057(9)	0.709(5)	0.019(7)
K1'	К	0.4122(7)	0.8524(13)	0.4428(7)	0.260(7)	0.014(4)
К2	К	0.1130(9)	0.6582(13)	0.0235(11)	0.176(6)	0.040(2)
К2_	К	0.0892(3)	0.6873(5)	0.1659(5)	0.300(7)	0.045(4)
К2'_	К	0.1093(2)	0.7230(3)	0.0733(5)	0.576(7)	0.017(3)
Ti1	Ti	0.3867(2)	0.4951(9)	0.0022(7)	1	0.0255(6)
Ti2	Ti	0.2448(4)	0.2574(10)	0.2564(9)	1	0.0255(6)
P1	Р	0.5002(7)	0.3292(5)	0.2573(11)	1	0.0157(8)
P2	Р	0.1798(3)	0.5039(15)	0.5054(13)	1	0.0157(8)
01	0	0.4758(7)	0.4903(18)	0.1545(11)	1	0.0080(12)
02	0	0.4981(12)	0.4567(17)	0.3803(11)	1	0.0080(12)
03	0	0.4045(8)	0.2017(18)	0.2804(16)	1	0.0080(12)
04	0	0.5953(8)	0.1893(18)	0.2386(14)	1	0.0080(12)
05	0	0.1220(10)	0.3082(16)	0.5454(13)	1	0.0080(12)
06	0	0.1066(10)	0.6862(16)	0.4842(14)	1	0.0080(12)
07	0	0.2574(10)	0.540(3)	0.6112(13)	1	0.0080(12)
08	0	0.2459(11)	0.463(3)	0.3889(12)	1	0.0080(12)
F1	F	0.2706(12)	0.534(3)	0.8845(13)	1	0.0208(19)
F2	F	0.2752(11)	0.494(3)	0.1308(12)	1	0.0208(19)

Bond	Distance, Å	Bond	Distance, Å
Ti1-01	2.008(2)	Ti2-O3	2.123(1)
Ti1-02	2.015(2)	Ti2-04	1.983(3)
Ti1-05	2.070(1)	Ti2-07	2.097(2)
Ti1-06	1.998(3)	Ti2-08	1.945(9)
Ti1-F1	1.987(7)	Ti2-F1	2.001(8)
Ti1-F2	2.005(6)	Ti2-F2	2.073(10)
P1-01	1.549(7)	P2-05	1.528(8)
P1-02	1.558(6)	P2-06	1.527(2)
P1-O3	1.511(9)	P2-07	1.539(2)
P1-04	1.542(4)	P2-08	1.543(9)

Table S4. Selected interatomic distances for $KTiPO_4F$

Fig. S2 Galvanostatic charge and discharge profiles in the potential range of 0.001-3.0 V and 0.001-2.5 V including the first discharge.

Fig. S3 The contribution of graphene nanoplate (GN) to the capacity at a) the current density 26.6 mA g^{-1} (C/5 rate) and b) current density 130 mA g^{-1} (C rate).

nowder sample calculated from FDX analysis						
Spectrum number	O, at.%	F, at.%				
. 1	80.5	19.5				
2	80.7	19.4				
3	80.9	19.1				
4	80.5	19.5				
5	80.9	19.1				
6	80.2	19.8				
7	80.6	19.4				
8	80.9	19.1				
9	80.0	20.0				
10	80.4	19.6				
11	80.3	19.7				
12	80.7	19.3				
13	80.8	19.3				
14	80.8	19.2				
15	79.6	20.4				
16	80.0	20.0				
17	80.6	19.5				
18	80.6	19.4				
19	79.8	20.2				
20	79.9	20.1				
Avg.	80.4	19.6				
Std. dev.	0.4	0.4				

Table S5. O:F ratio in pristine KTiPO₄F

Fig. S4 Cyclic voltammogram of KTPF in the 0.001 – 4.2 V potential range at 100 μ V s⁻¹ scan rate.

Fig. S5 Phase and cell parameters alteration study of KTPF. a) the first discharge (from OCV) of KTPF||K cell during *operando* XRD study b) *operando* XRD patterns at the angle of 31-33 (degrees), 411 and 221 reflections c) *a*, *b* and *c* parameter change upon intercalation of K-ion d) Unit cell volume change trend during operando XRD measurement.

Fig. S6 The reversibility study of KTPF//K cell with operando XRD a) the recorded operando XRD patterns b) discharge and charge of the pre-cycled half-cell from OCV. The star sign (*) marks the reflections from the cell components (which remain unchanged during the operando experiment).

Table S6. The comprehensive comparison of KTPF with the reported polyanion benchmarks.

Active material (Structure)	Theoretical capacity (mAh g ⁻¹)	Electrode composition (weight ratio) AM = active material	Electrolyte formulation	Reversible capacity (mAh g ⁻¹) @current (mA g ⁻¹)	Potential window (V)	Capacity retention (%), cycles @ current density (mA g ⁻¹)	ICE (%)	Ref
This work (Orthorhombic)	133	AM:G: PVdF=8.5:1:0.5	1 M KPF ₆ in EC:PC (1:1 v/v)	205 @ 26.6	0.001-3	99, 1000 @ 130	57	
KVPO₄F (Orthorhombic)	131.4	AM:SP: PVdF=7:2:1	1 M KPF ₆ in EC:PC (1:1 v/v)	105 @ 100	0-3	91, 100 @ 100	51	[2]
K _{0.76} V _{0.55} Nb _{0.45} OPO ₄ (Orthorhombic)	97	AM:SP: CMC=8:1:1	5 M KFSI in DEGDME	82.6 @ 3	0.1-1.8	66.4 <i>,</i> 550 @ 5	53	[3]
K _{2.13} V _{1.52} Ti _{0.48} (PO ₄) ₃ (Orthorhombic)	137	AM:SP: CMC=8:1:1	5 M KFSI in DEGDME	136 @ 10	0.01-2.5	69.3, 1000 @ 100	49.63	[4]
KTiOPO₄-rGO (Orthorhombic)	135	AM:AB: SA =8:1:1	1 mol dm ⁻³ KFSA in EC: DEC (1:1 v/v)	125 @ 10	0.1-2.5	84, 70 @ 20	67	[5]
KTiOPO₄ (Orthorhombic)	150	N/A	N/A	176.7 @ 30	0-3	78.4, 10000 @ 3000	51.5	[6]
K ₂ Ti ₈ O ₁₇ (Monoclinic)	308	AM:SP: PVDF=7:2:1	0.8 M KPF ₆ EC:DEC (1:1 v/v)	109 @20	0.01-3	62.7, 50 @ 20	57	[7]
K₂Ti₄O₃ (Monoclinic)	129	AM:AB: PVDF=7:2:1	1 M KPF ₆ in EC:PC (1:1 v/v)	90 @30	0-2.5	47.3, 30 @ 100	18	[8]
K₂Ti₄O₃ (Monoclinic)	129	AM: PVDF=7:2:1	1M KPF ₆ in Diglyme	122 @ 20	0.01-3	61, 100 @ 50	23%	[9]
H-TiO2-C MTs (Hetero-structure) KTi-(PO.)-@C	N/A	N/A	0.8 M KPF ₆ In EC:DEC (1:1 v/v)	197.5 @ 200	0.01-3.0.	81.3, 1200 @ 500	49.1	[10]
or (KTPO@C) (Rhombohedral)	N/A	AM:SP:CMC=7:2:1	0.8 M KPF ₆ in EC/DEC (1:1 v/v)	250 @ 20	0.01-3.	34, 1000 @ 1000	64.5	[11]
π-Ti ₂ O(PO ₄) ₂	N/A	AM: SP:CMC=8:1:1	3 M KFSI in 1,2-DME	224 @ 100	0.01-3	82.5, 2000 @ 1000	55.5	[12]
CrPO₄@NC (Orthorhombic)	N/A	AM: AB: PVDF= 7:2:1	1 M KFSI in EC: DEC (1:1 v/v)	300 @ 50	0.01-3.0	74.3, 100 @ 200	43.1	[13]
VPO ₄ (Amorphous)	550	AM:AB: CMC=7:2:1	3 M KFSI in DME	390 @ 50	0.01-3.0	90, 500 @ 500	63.8	[14]
TiP ₂ O ₇ (Cubic)	N/A	AM:SP: PVDF=8:1:1	0.8 M KPF ₆ in EC:DEC (1:1 v/v)	321 @ 100	0.01-3	56, 5000 @ 1000	45	[15]
Co ₂ P ₂ O ₇ /C (N/A)	N/A	AM:SP: CMC=7:2:1	1 M KFSI in DME	441 @ 100	0.01-3	62, 900 @ 1000	N/A	[16]
CoC ₂ O ₄ /CNTs (Monoclinic)	400	AM:SP: PAA=8:1:1	0.5 M KPF ₆ in PC:FEC (98:2 v/v)	400 @ 100	0-3	73, 200 @ 40	51.5	[17]
Co(PO ₃) ₂ NSs/CC (Monoclinic)	N/A	100% of AM	0.8 M KPF ₆ in EC:DEC (1:1 v/v)	700 @ 50	0-1.5	83, 50 @ 500	57	[18]

Table S7: The comparison of half-cell specification of graphite, hard carbon, and KTPF.

Anode	Average	Theoretical	Rate performance	Long-cycling performance;	Ref.
materials	potential, v	al, V Capacity, (c mAh g ⁻¹ @ current rate (c	(capacity, mAn g ⁻⁺)		
KTPF	0.8	133.4	50 mAh g ⁻¹ @ 7.5 C	1000 cycles @ 1C; (130)	This work
Commercial	0.1	279	50 mAh g⁻¹ @ 0.7 C	200 cycles @	19
graphite				0.036 C; (80)	
Expanded graphite	0.1	279	176 mAh g ⁻¹ @ 0.7 C	500 cycles @ 0.7 C; (176)	19
Hard Carbon	0.3	279	44.4 mAh g ⁻¹ @ 10 C	400 cycles @ 0.2 C (200)	20

References

- 1 S. S. Fedotov, N. D. Luchinin, D. A. Aksyonov, A. V. Morozov, S. V. Ryazantsev, M. Gaboardi, J. R. Plaisier, K. J. Stevenson, A. M. Abakumov and E. V. Antipov, *Nat Commun*, 2020, **11**, 1–11.
- 2 H. Tan, X. Du, J. Q. Huang and B. Zhang, *Chemical Commun.*, 2019, **55**, 11311–11314.
- 3 J. Bao, W. Deng, J. Liu and C. F. Sun, *Energy Stor. Mater.*, 2021, 42, 806–814.
- 4 W. Wang, Z. Kang, C. F. Sun and Y. Li, *Electrochem. Commun.*, 2022, **136**, 107247.
- 5 P. Ramesh Kumar, K. Kubota, D. Igarashi and S. Komaba, J. Phys. Chem. C, 2021, **125**, 24823–24830.
- 6 Y. Qi, J. Li, W. Zhong, S. Bao and M. Xu, *Chem. Eng. J.*, 2021, **417**, 128159.
- 7 J. Han, M. Xu, Y. Niu, G. N. Li, M. Wang, Y. Zhang, M. Jia and C. M. Li, *Chem. Commun.*, 2016, **52**, 11274–11276.
- 8 B. Kishore, V. G and N. Munichandraiah, *J Electrochem Soc*, 2016, **163**, A2551–A2554.
- 9 Y. Dong, Z.-S. Wu, S. Zheng, X. Wang, J. Qin, S. Wang, X. Shi and X. Bao, ACS Nano, 2017, 11, 4792–4800.
- 10 Y. Li, C. Yang, F. Zheng, Q. Pan, Y. Liu, G. Wang, T. Liu, J. Hu and M. Liu, *Nano Energy*, 2019, **59**, 582–590.
- 11 J. Han, Y. Niu, S. J. Bao, Y. N. Yu, S. Y. Lu and M. Xu, Chem. Commun., 2016, 52, 11661–11664.
- 12 X. Sun, Z. Li, Z. Liu, X. Lv, K. Shi, R. Chen, F. Wu and L. Li, *Adv Funct Mater*, 2023, 2300125.
- 13 J. Hu, Y. Xie, J. Zheng, L. Zhang, H. Li, Y. Lai and Z. Zhang, *Electrochim. Acta*, 2022, **409**, 139996.
- 14 J. Liao, Q. Hu, J. Mu, X. He, S. Wang, D. Jiemin and C. Chen, *Chem. Commun.*, 2019, **55**, 13916–13919.
- 15 Z. Li, Y. Dong, J. Feng, T. Xu, H. Ren, C. Gao, Y. Li, M. Cheng, W. Wu and M. Wu, ACS Nano, 2019, 13, 9227–9236.
- 16 Y. Zhang, Y. Zheng, H. Geng, Y. Yang, M. Ye, Y. Zhang and C. Chao Li, *Chem. Eur. J.*, 2021, **27**, 9031–9037.
- 17 C. H. Jo, J. H. Jo, J. U. Choi, H. Yashiro, H. Kim and S. T. Myung, ACS Sustain Chem. Eng., 2020, **8**, 3743–3750.
- 18 H. He, L. Zeng, X. Li, J. Hao, D. Luo, J. He, W. Kang, Q. Wang, H. Wang and C. Zhang, *ACS Appl. Mater. Interfaces*, 2021, **13**, 34410–34418.
- 19 Y. An, H. Fei, G. Zeng, L. Ci, B. Xi, S. Xiong and J. Feng, *J Power Sources*, 2018, **378**, 66–72.
- 20 Z. Jian, S. Hwang, Z. Li, A. S. Hernandez, X. Wang, Z. Xing, D. Su and X. Ji, Adv. Funct. Mater, 2017, 27, 1700324.