Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2024

Supporting Information

Multi-Functional Perovskite Oxide Pr_{0.6}Sr_{0.4}Mn_{0.2}Fe_{0.7}Ni_{0.1}O_{3-δ} as an Efficient Quasi-Symmetric Electrode for Solid oxide Fuel/Electrolysis Cells

Junil Choi^a, Daehee Jang^a, Minho Kim^a, Jungseub Ha^a, Hwichan Ahn^a, and Won Bae Kim^{a, b, *}

^a Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77

Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Republic of Korea

^b Graduate Institute of Ferrous & Energy Materials Technology, Pohang University of Science and Technology

(POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, Republic of Korea

*Corresponding authors

E-Mail addresses: kimwb@postech.ac.kr

Table	S1.	Peak	power	density	(PPD)	comparison	of	symmetric	electrodes	in	H ₂ -operated
-------	------------	------	-------	---------	-------	------------	----	-----------	------------	----	--------------------------

			PP			
Material	Electrolyte	Cell	(W cl	Ref		
		configuration	Gas	Value (Temp.)		
$\begin{array}{c} (La_{0.8}Sr_{0.2})_{0.9}Sc_{0.2}Mn_{0.75}Ru_{0.05}O_{3-\delta}\\ (LSCMR) \end{array}$	SSZ (200µm)	LSSMR SSZ LS SMR	wet H ₂	0.318 (800°C)	[1]	
Sr ₂ Ti _{0.8} Co _{0.2} FeO ₆ (STCF)	LSGM (270µm)	STC02F LSGM STC02F	dry H ₂	0.555 (800°C)	[2]	
$\begin{array}{c} La_{0.6}Sr_{0.4}Fe_{0.95}Ru_{0.05}O_{3-\delta}\\ (LSFRu) \end{array}$	LSGM (300µm)	LSGMR05 LSG M LSGMR05	dry H ₂	602 (850°C)	[3]	
$\begin{array}{c} La_{0.5}Sr_{0.5}Fe_{0.9}W_{0.1}O_{3-\delta} \\ (LSFW) \end{array}$	LSGM (250µm)	LSFW LSGM LS FW	wet H ₂	0.618 (800°C)	[4]	
$\frac{Ce_{0.2}Sr_{0.8}Fe_{0.95}Ru_{0.05}O_{3}}{(CeSFR)}$	LSGM (320µm)	Ce20SFR LSGM Ce20SFR	dry H ₂	0.846 (800°C)	[5]	
$\begin{array}{c} Pr_{0.6}Sr_{0.4}Fe_{0.8}Mn_{0.2}O_{3-\delta}-Ce_{0.9}Gd_{0.1}O_{2-\delta}\\ (PSMFN\text{-}GDC)\end{array}$	LSGM (300µm)	PSMFN- GDC LSGM PS MFN-GDC	dry H ₂	602 (850°C)	This work	

SOFC

Material	Electrolyte	Cell configuration	Current de	Ref		
			Gas	Value (Temp., Voltage)		
$\begin{array}{c} La_{0.4}Sr_{0.6}Co_{0.2}Fe_{0.7}Nb_{0.1}O_{3-\delta}\\ (LSCFNb) \end{array}$	ΥSZ (200μm)	LSCFN- GDC YSZ LSCFN -GDC	30% CO/CO ₂	0.4 (800°C, 1.5V)	[6]	
$\begin{array}{c} La_{0.6}Sr_{0.4}Fe_{0.95}Pt_{0.05}O_{3-\delta}\\ (Fe@LSPt) \end{array}$	LSGM (300µm)	LSPt LSGM LSPt	50% CO/CO ₂	0.65 (850°C, 1.5V)	[7]	
$(La,Sr)Fe_{0.9}Ni_{0.1}O_{4+\delta}(RPLSFN0.1)$	LSGM (300µm)	RPLSFN0.1 LSG M RPLSFN0.1	50% CO/CO ₂	0.75 (800°C, 1.5V)	[8]	
$\begin{array}{c} La_{0.8}Sr_{0.2}Cr_{0.5}Fe_{0.5}O_{3-\delta}\text{-}Zr_{0.84}Y_{0.16}O_{2-\delta}\\ (LSCrF\text{-}YSZ)\end{array}$	ΥSZ (200μm)	LSCrF- YSZ YSZ LSCrF- YSZ	30% CO/CO ₂	0.75 (850°C, 1.5V)	[9]	
$ \begin{array}{c} La_{0.65}Bi_{0.1}Sr_{0.25}Cr_{0.5}Fe_{0.5}O_{3-\delta}\text{-}Ce_{0.8}Sm_{0.2}O_{1.9}\\ (LBiSCRF\text{-}SDC) \end{array} $	LSGM (330µm)	Bi-LSCRF- SDC LSGM Bi- LSCRF-SDC	50% CO/CO ₂	0.79 (800°C, 1.5V)	[10]	
$\frac{Pr_{0.6}Sr_{0.4}Fe_{0.8}Mn_{0.2}O_{3-\delta}-Ce_{0.9}Gd_{0.1}O_{2-\delta}}{(PSMFN-GDC)}$	LSGM (300µm)	PSMFN- GDC LSGM PSM FN-GDC	30% CO/CO ₂	1.02 (850°C, 1.5V)	This work	

Table S2. Current density comparison of symmetric electrodes for CO_2 electrolysis in SOEC.

Fig. S1. XRD pattern of grounded twice-sintered LSGM pellet.

Fig S2. The Cross-sectional SEM images of (a) PSMFN-GDC symmetrical cell based on LSGM electrolyte and (b) magnified electrode.

Fig S3. HR-TEM image of reduced PSMFN.

Figure S4. The 1st derivative curves of XAENS spectra of PSMFN, reduced PSMFN and corresponding reference oxides at (a) Fe-K edge and (b) Ni K-edge

Figure S5. XPS surveys of the as prepared and reduced PSMFN

Figure S6. Symmetric half-cell tests of PSMFN-GDC under (a) air and (b) H_2 atmosphere.

Figure S7. EIS profiles of PSMFN-GDC symmetric cell under applied voltage conditions in (a) SOFC mode and (b) SOEC mode

References

- J. Zhou, N. Wang, J. Cui, J. Wang, J. Yang, Z. Zong, Z. Zhang, Q. Chen, X. Zheng, K. Wu, J. Alloys Compd., 2019, **792**, 1132–1140.
- [2] B. Niu, C. Lu, W. Yi, S. Luo, X. Li, X. Zhong, X. Zhao, B. Xu, Appl. Catal. B, 2020, **270**, 118842.
- [3] M. Marasi, L. Duranti, I. Luisetto, E. Fabbri, S. Licoccia, E. Di Bartolomeo, J. Power Sources, 2023, 555, 232399.
- [4] S. Wang, B. Wei, Z. Lü, Int. J. Hydrogen Energy, 2021, **46**, 30101–30111.
- [5] B. Li, S. He, J. Li, X. Yue, J.T.S. Irvine, D. Xie, J. Ni, C. Ni, ACS Catal., 2020, **10**, 14398–14409.
- [6] Z. Yang, C. Ma, N. Wang, X. Jin, C. Jin, S. Peng, J. CO2 Util., 2019, **33**, 445–451.
- [7] A.P. Panunzi, L. Duranti, I. Luisetto, N. Lisi, M. Marelli, E. Di Bartolomeo, Chem. Eng. J., 2023, 471, 144448.
- [8] C. Liu, C. Sun, L. Bian, W. Yu, J. Qi, S. Li, J. Gao, J. Peng, J. Peng, S. An, Int. J. Hydrogen Energy, 2022, 47, 9517–9526.
- [9] S. Xu, S. Li, W. Yao, D. Dong, K. Xie, J. Power Sources, 2013, **230**, 115–121.
- [10] Y. Wan, Y. Yang, Y. Lu, R. Peng, C. Xia, ACS Appl. Energy Mater., 2022, **5**, 2339–2348.