Electronic Supplementary Information

Photocatalytic oxidative cyclization of aromatic thioamides catalyzed by Cu₂O rhombic dodecahedra

Guan-Ru Wang and Michael H. Huang*

Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan E-mail: hyhuang@mx.nthu.edu.tw

Synthesis of polyhedral Cu₂O crystals

For the synthesis of Cu₂O cubes, 38.2 mL of deionized water was added to dissolve 0.348 g of SDS. The mixture was stirred at 31 °C for 5 min. After adding 0.4 mL of 0.1 M CuCl₂ solution, the mixture was kept stirring for 25 min. Next, 0.8 mL of 1.0 M NaOH solution was added and stirred for 5 sec, then quickly added 0.6 mL of 0.2 M NH₂OH·HCl solution and stirred for 20 sec. After stop stirring, the solution was aged for 50 min.

To make Cu₂O rhombic dodecahedra, 27.68 mL of deionized water was added to dissolve 0.348 g of SDS. The mixture was stirred at 31 °C for 5 min. After adding 2.0 mL of 0.1 M CuCl₂ solution, the mixture was kept stirring for 25 min. Next, 0.72 mL of 1.0 M NaOH solution was added and stirred for 4 sec, followed by the introduction of 9.6 mL of 0.1 M NH₂OH·HCl solution and stirred for 20 sec. After stop stirring, the solution was aged for 50 min.

For the formation of Cu₂O cotahedra, 26.20 mL of deionized water was added to dissolve 0.348 g of SDS. The mixture was stirred at 31 °C for 5 min. After adding 0.8 mL of 0.1 M CuCl₂ solution, the mixture was kept stirring for 10 min. Next, 0.8 mL of 1.0 M NaOH solution was added and stirred for 3 sec. Subsequently, 2.6 mL of 0.2 M NH₂OH·HCl solution was quickly introduced and stirred for 10 sec. After stop stirring, the solution was aged for 25 min.

After aging, the solution was centrifuged at 10,000 rpm for 3 min. A 1:1 volume ratio of water and ethanol was used to wash the particles. Finally, the particles were stored in absolute ethanol.

Radical scavenging experiment

Rhombic dodecahedral Cu₂O nanocrystals (2.9 mg), thioamide (0.4 mmol, 1.0 equiv.) and 0.4 mmol DABCO (or 1.0 equiv. of 1,4-benzoquinone, K₂S₂O₈, potassium iodine, sodium oxalate, or isopropyl alcohol) were added to a 15 mL quartz test tube with a stir bar and sealed with a rubber septum. The tube was evacuated using a vacuum pump and refilled with O₂ for three times. After the evacuation and refill cycles, THF was injected into the tube. The mixture was sonicated for 3 min and placed approximately 2 cm from a blue LED lamp (40 W, λ = 390 nm). After the indicated

irradiation period, Cu_2O crystals were separated by centrifugation at 10,000 rpm for 3 min. The solvent was removed by a rotavapor to obtain the crude product. The residue was purified by short column chromatography.

Fig. S1 Size distribution histograms of the prepared Cu_2O cubes, octahedra, and rhombic dodecahedra.

Fig. S2 XRD patterns of the synthesized Cu₂O crystals. A standard pattern of Cu₂O is also shown.

Table S1 Calculations for the particle	weights needed for the photocatal	ysis
experiment		

	Cubes Octahedra		Rhombic dodecahedra
Size (nm)	307	292	331
Surface area for single particle (nm ²)	5.65×10^{5}	1.48×10^{5}	4.65×10^{5}
Volume for single particle (nm ³)	2.89×10^{7}	4.15×10^{6}	2.56×10^{7}
Weight for single particle (mg)	1.74×10^{-13}	2.49×10^{-14}	1.54×10^{-13}
Fixed surface area (nm ²)	8.8×10^{15}		
Number of particles	1.56×10^{10}	5.96×10^{10}	1.89×10^{10}
Weight (mg)	2.7	1.5	2.9

 Table S2 Effect of light wavelength on product yield^{a,b}

∬ ^S	Cu ₂ O RDs, O ₂		N-S	
NH ₂	THF, room temperature LED (40 W)			
entry ^a	time (h)	wavelength (nm)	yield $(\%)^b$	
1	6	390	51	
2	8	390	94	
3	8	370	82	
4	8	440	37	

^{*a*} Reagents: thiobenzamide (0.4 mmol) and Cu₂O RDs (2.9 mg) in THF (3 mL).

^b Isolated yield.

Fig. S3 SEM images of the Cu_2O (a) cubes, (b) octahedra and (c) rhombic

dodecahedra after the thiobenzamide cyclization reaction.

Fig. S4 XRD patterns of Cu_2O cubes, octahedra and rhombic dodecahedra after the oxidative thiobenzamide cyclization reaction.

Fig. S5 Illustration of the Cu₂O crystal synthesis conditions.

Fig. S6 Illustration of the steps before photocatalytic oxidative cyclization of

thioamides. The black square-shaped device is a fan. **Spectroscopic data of isolated products**

3,5-Diphenyl-1,2,4-thiadiazole (2a)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.42–8.40 (dd, *J* = 7.2, 1.6 Hz, 2H), 8.07–8.05 (dd, *J* = 7.2, 1.6 Hz, 2H), 7.54–7.50 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 188.1, 173.8, 132.9, 131.9, 130.7, 130.3, 129.2, 128.7, 128.3, 127.5.

3,5-Bis(4-methylphenyl)-1,2,4-thiadiazole (2b)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.28 (d, *J* = 8.0 Hz, 2H), δ 7.94 (d, *J* = 8.4 Hz, 2H), 7.33–7.30 (m, 4H), δ 2.43 (d, *J* = 3.2 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 188.0, 173.8, 142.4, 140.4, 130.4, 129.9, 129.4, 128.3, 128.2, 127.4, 21.6, 21.5.

3,5-Bis(4-trimethylphenyl)-1,2,4-thiadiazole (2c)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.35–8.32 (m, 2H), δ 8.00–7.94 (m, 2H), δ 7.55–7.53 (dd, *J* = 8.8, 0.8 Hz, 4H), δ 1.39 (d, *J* = 3.2 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃) δ 187.8, 173.8, 155.5, 153.5, 130.3, 128.1, 127.3, 126.2, 125.6, 35.1, 34.9, 31.2, 31.1.

3,5-Bis(4-methoxyphenyl)-1,2,4-thiadiazole (2d)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.32 (d, *J* = 8.8 Hz, 2H), δ 7.99 (d, *J* = 8.8 Hz, 2H), δ 7.02–6.99 (dd, *J* = 9.2, 2.4 Hz, 4H), δ 3.88 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 187.4, 173.4, 162.5, 161.3, 129.9, 129.1, 126.1, 123.7, 114.5, 114.0, 55.5, 55.4.

3,5-Bis(4-fluorophenyl)-1,2,4-thiadiazole (2e)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.38–8.36 (m, 2H), δ 8.07–8.02 (m, 2H), 7.25–7.15 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 172.8, 166.2, 165.5, 163.7, 163.8, 130.5, 130.4, 129.7, 129.6, 116.6, 116.4, 115.8, 115.6.

3,5-Bis(4-chlorophenyl)-1,2,4-thiadiazole (2f)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.33–8.30 (dd, *J* = 6.8, 2.0 Hz, 2H), δ 7.99–7.97 (dd, *J* = 6.4, 1.6 Hz, 2H), 7.52–7.46 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 172.8, 138.2, 136.6, 131.2, 129.7, 129.6, 129.0, 128.7.

3,5-Bis(4-bromophenyl)-1,2,4-thiadiazole (2g)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.24 (d, J = 8.4 Hz, 2H), δ 7.90 (d, J = 6.4 Hz, 2H), δ 7.68–7.62 (dd, J = 13.2, 8.4 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 187.2, 172.9, 132.6, 131.9, 131.6, 129.9, 129.4, 128.8, 126.6, 125.1.

3,5-Bis(4-trifluoromethylphenyl)-1,2,4-thiadiazole (2h)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, *J* = 6.5 Hz, 2H), δ 8.17 (d, *J* = 6.5 Hz, 2H), 7.76–7.81 (dd, *J* =13.6, 6.6 Hz, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 187.0, 172.7, 135.6, 134.1, 133.8, 133.6, 133.5, 133.3, 132.6, 132.4, 132.1, 131.8, 128.7, 127.8, 126.4, 125.7, 125.8, 125.1, 124.6.

3,5-Di(naphthalen-2-yl)-1,2,4-thiadiazole (2i)

white solid, ¹H NMR (400 MHz, CDCl₃) δ 8.98 (d, J = 0.8 Hz, 1H), δ 8.62 (s, 1H), δ 8.52–8.50 (dd, J = 8.6, 1.8 Hz, 1H), δ 8.15–8.13 (dd, J = 8.7, 1.6 Hz, 1H), δ 8.05–7.97 (m, 4H), δ 7.92–7.89 (m, 2H), δ 7.63–7.54 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 188.2, 174.0, 135.0, 134.4, 133.3, 133.1, 130.3, 129.2, 129.0, 128.6, 128.4, 128.0, 127.9, 127.8, 127.7, 127.2, 127.1, 126.5, 125.2, 124.2.

3,5-Bis(thiophen-2-yl)-1,2,4-thiadiazole (2j) white solid, ¹H NMR (400 MHz, CDCl₃) δ 7.94–7.92 (dd, *J* =3.6, 1.2 Hz, 1H), δ 7.70–7.68 (ddd, *J* = 3.8, 2,2, 1.1 Hz, 1H), δ 7.59–7.57 (ddd, *J* = 5.0, 2,1, 1.1 Hz, 1H), δ 7.46–7.45 (dd, *J* = 4.8, 1.1 Hz, 1H), δ 7.17–7.13 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 180.7, 168.4, 136.2, 133.1, 130.5, 129.9, 129.2, 128.8, 128.4, 127.9.

Spectrum S2 ¹³C NMR spectrum of compound 2a.

¹⁹⁰ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Spectrum S4 ¹³C NMR spectrum of compound 2b.

Spectrum S6 ¹³C NMR spectrum of compound **2c**.

¹⁹⁰ ¹⁸⁰ ¹⁷⁰ ¹⁶⁰ ¹⁵⁰ ¹⁴⁰ ¹³⁰ ¹²⁰ ¹¹⁰ ¹⁰⁰ ⁹⁰ ⁸⁰ ⁷⁰ ⁶⁰ ⁵⁰ ⁴⁰ ³⁰ ²⁰ ¹⁰ ^{ppm} **Spectrum S8** ¹³C NMR spectrum of compound 2d.

¹⁹⁰ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Spectrum S10 ¹³C NMR spectrum of compound 2e.

¹⁹⁰ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Spectrum S12 ¹³C NMR spectrum of compound 2f.

Spectrum S14 ¹³C NMR spectrum of compound 2g.

8.513 8.497 8.176 8.160 8.160 8.160 7.812 7.796 7.778 7.778 7.778 7.778 7.761

Spectrum S16 13 C NMR spectrum of compound 2h.

Spectrum S18 ¹³C NMR spectrum of compound 2i.

¹⁹⁰ 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 ppm Spectrum S20 ¹³C NMR spectrum of compound 2j.