Supporting Information for

A two-enzyme system in an amorphous metal-organic framework for the synthesis of D-phenyllactic acid

Yifeng Wang^{a, b}, Xiaolong Sun^a, Jiahuan Hu^a, Qing Guo^{a, c}, Ping Zhang^d, Xi Luo^{a, *}, Baoxing Shen^{b, *}, Yongqian Fu^{a, *}

^a Taizhou Key Laboratory of Biomass Functional Materials Development and Application, Taizhou University, Jiaojiang 318000, Zhejiang, China

^b School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, Jiangsu 210023, China

^c School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China

^d Zhejiang Kingsun Eco-Pack Co., Ltd., Xianju, Zhejiang 317300, China

* Corresponding author E-mail address: lxtzusols@163.com; shenbx@njnu.edu.cn; bioengineer@163.com

Table of Contents

1 Experimental Procedures				
S1	Expression and purification of D-lactate dehydrogenase and glucose dehydrogenase			
S2	Characterization of LDH/GDH-ZIFs biocomposites			
S3	Determination of enzyme kinetic parameters			
2 Figures and Tables				
Fig. S1	SDS-PAGE analysis. M: protein molecular weight marker; lane 1 and 4: soluble			
	fractions from lactose induced E. coli/LDH and E.coli/GDH, respectively; lane 2			
	and 5: precipitates from lactose induced E. coli/LDH and E.coli/GDH, respectively;			
	lane 3 and 6: the purified LDH and GDH, respectively.			
Fig. S2	The calibration curves of BSA for analyzing the encapsulation rate of protein.			
Fig. S3	Standard curve for determination of enzyme activity.			
Fig. S4	Chromatographic peaks of the standards (Blue: 1 g/L PPA; Black: 1 g/L PLA; Red:			
	0.5 g/L PPA-PLA).			
Fig. S5	Relative activity of different LDH: GDH ratios.			
Fig. S6	XPS spectra of ZIF-90 and LDH/GDH-ZIF-90.			
Fig. S7	(A) SEM image of LDH/GDH-ZIF-90 biocatalysts; (B) Elemental Mappings of			

	LDH/GDH-ZIF-90 biocatalysts show the presence of C, N, O, Zn, S and P atoms.					
Fig. S8	Images of confocal laser scanning microscope. (A) Distribution of LDH labeled					
	with fluorescein isothiocyanate (FITC) in LDH/GDH-aZIF-90 composites; (B)					
	Distribution of GDH labeled with Rhodamine B in LDH/GDH-aZIF-90					
	composites; (C) Distribution of two-enzyme in LDH/GDH-aZIF-90 composites.					
Fig. S9	(A) N ₂ adsorption and desorption curves of LDH/GDH-ZIF-90 (Blue: adsorption;					
	Red: Desorption); (D) pore size distribution of LDH/GDH-ZIF-90.					
Fig. S10	Circular dichroism (CD) spectra of Free LDH and LDH-aZIF-90.					
Fig. S11	Circular dichroism (CD) spectra of Free GDH and GDH-aZIF-90.					
Fig. S12	Circular dichroism (CD) spectra of Free LDH/GDH and LDH/GDH-aZIF-90.					
Fig. S13	SEM image of LDH/GDH-aZIF-90 biocatalysts after reusability experiments.					
Table S1	LDH/GDH-ZIFs composites formed at different precursor concentrations					
Table S2	HPLC detection parameters					
Table S3	LDH/GDH-ZIFs composites formed at different ratios of LDH: GDH					
Table S4	Adsorption average pore width (4V/A by BET) of the LDH/GDH-ZIF-90, aZIF-90					
	and LDH/GDH-aZIF-90					
Table S5	Comparison with other reported LDH/GDH system					
Table S6	Enzyme kinetic parameter					
3 References						

Experimental Procedures

S1: Expression and purification of D-lactate dehydrogenase and glucose dehydrogenase

Based on the previous research¹, our laboratory (Taizhou Key Laboratory of Biomass Functional Materials Development and Application) preserved *E. coli*/D-lactate dehydrogenase(D-LDH, abbreviated as LDH) engineering bacteria and *E. coli*/glucose dehydrogenase (GDH) engineering bacteria. The steps for the expression and purification of two-enzyme are as follows.

The expression strain was grown in Luria–Bertani (LB) medium containing 50 μ g·mL⁻¹ kanamycin at 180 rpm and 37 °C for 10 h. Then, the pre-culture was transferred to a fresh LB/kanamycin medium for further growth at 37 °C and 180 rpm. After 2 h, lactose with a final concentration of 10 g·L⁻¹ was added to induce expression, and the culture was continued for 12 h at 28 °C and 150 rpm. Cells were collected by centrifugation at 6300 ×*g* and 4 °C for 10 min, and crude enzyme solution was obtained from lysed cells.

The crude enzyme was loaded onto a Ni²⁺-nitrilotriacetic acid column (1.6 cm×10 cm, BioRad, USA) pre-equilibrated with Buffer A (20 mM potassium phosphate buffer, pH 8.0, 500 mM NaCl and 20 mM imidazole). Buffer B (20 mM potassium phosphate buffer pH 8.0, 500 mM NaCl and 500 mM imidazole) was used to elute the enzyme at a flow rate of 1.0 mL·min⁻¹. The purified enzyme was collected and dialyzed overnight against 20 mM potassium phosphate buffer (pH 8.0) to remove salt ions and imidazole.

S2: Characterization of LDH/GDH-ZIFs biocomposites

Powder X-ray Diffraction (XRD): XRD patterns were obtained using a Bruker D8 Advance X-ray diffractometer with K α radiation ($\lambda = 1.5405$ Å) from a Cu anode. The scan speed was 10 °·min⁻¹, with a 0.02 ° step, and the diffraction data were collected over a range of $2\theta = 5-40$ °.

Thermogravimetric Analysis (TGA): TGA data were collected using a TA instruments synchronous thermal analyzer (STA) (TGA/DSC). A sample of approximately 5 mg was placed on a ceramic pan and heated from 30 to 800 °C at a rate of 5 °C ·min⁻¹. Each sample was heated in a constant flow of air.

Fourier transform infrared (FT-IR) spectroscopy: FT-IR spectra were recorded on a Nicolet 5700 FTIR spectrometer using samples of approximately 1 mg. Thirty-two scans were recorded over the range of 4000–650 cm⁻¹. Scanning Electron Microscope (SEM)/Energy Dispersive Spectrometer (EDS): SEM images were recorded using a Hitachi S-4800 field-emission scanning electron microscope (FESEM). The elemental composition was determined using an energy-dispersive spectrometer (EDS).

Gas Sorption: Gas adsorption isotherms were recorded on an ASAP-2020-HD88 surface characterization analyzer. Samples comprising approximately 30 mg were placed into a glass analysis tube and degassed under a dynamic vacuum for 12 h at 105 $^{\circ}$ C before measurement. Nitrogen (N₂) adsorption and desorption isotherms were measured at 277 K.

X-Ray photoelectron spectroscopy (XPS): XPS analysis was performed using Thermo Fisher Scientific K-Alpha, Al K α radiation (hv=1253.6 eV).

Circular dichroism spectra (CDs): CD data was obtained by Applied Photophysics Chirascan to evaluate the possible secondary structure changes of the enzyme. The LDH-aZIF-90, GDH-aZIF-90, LDH/GDH-aZIF-90, free LDH, free GDH, and free LDH/GDH were incubated in the same buffer. CD spectra were measured on a CD spectrophotometer at room temperature using a quartz cuvette with a path length of 1 mm and recorded in the range 190-250 nm in steps of 0.5 nm.

Confocal Laser Scanning Microscopy (CLSM): LDH and GDH were labeled with fluorescein isothiocyanate (FITC) and rhodamine B, respectively. The distribution of both enzymes in amorphous ZIF-90 was characterized by CLSM (Olympus, FV3000).

S3: Determination of enzyme kinetic parameters

The reaction mixture of 1.2 mL containing NAD⁺, PPA, Glu and enzyme solution or NADH, PPA and enzyme solution was dissolved in 20 mM Tris-HCl buffer (pH=7). After incubation at 30 °C for 1 min, the amount of D-PLA was determined by HPLC. One enzyme activity unit (U) was defined as the amount of enzyme producing 1 μ M D-PLA per minute. Enzyme activity was measured at different substrate concentrations (PPA, 2-10 mM;) and the data were fitted to the Michaelis-Menten equation.

Figures and Tables

Fig. S1: SDS-PAGE analysis. M: protein molecular weight marker; lane 1 and 4: soluble fractions from lactose induced *E. coli*/LDH and *E.coli*/GDH, respectively; lane 2 and 5: precipitates from lactose induced *E. coli*/LDH and *E.coli*/GDH, respectively; lane 3 and 6: the purified LDH and GDH, respectively.

Fig. S2: The calibration curves of BSA for analyzing the encapsulation rate of protein.

Fig. S3: Standard curve for determination of enzyme activity.

Fig. S4: Chromatographic peaks of the standards (Blue: 1 g/L PPA; Black: 1 g/L PLA; Red: 0.5 g/L PPA-PLA).

Fig. S5: Relative activity of different LDH: GDH ratios.

Fig. S6: XPS spectra of ZIF-90 and LDH/GDH-ZIF-90.

Fig. S7: (A) SEM image of LDH/GDH-ZIF-90 biocatalysts; (B) Elemental Mappings of LDH/GDH-ZIF-90 biocatalysts show the presence of C, N, O, Zn, S and P atoms.

Fig. S8: Images of confocal laser scanning microscope. (A) Distribution of LDH labeled with fluorescein isothiocyanate (FITC) in LDH/GDH-aZIF-90 composites; (B) Distribution of GDH labeled with Rhodamine B in LDH/GDH-aZIF-90 composites; (C) Distribution of two-enzyme in LDH/GDH-aZIF-90 composites.

Fig. S9: (A) N_2 adsorption and desorption curves of LDH/GDH-ZIF-90 (Blue: adsorption; Red: Desorption); (D) pore size distribution of LDH/GDH-ZIF-90.

Fig. S10: Circular dichroism (CD) spectra of Free LDH and LDH-aZIF-90.

Fig. S11: Circular dichroism (CD) spectra of Free GDH and GDH-aZIF-90.

Fig. S12: Circular dichroism (CD) spectra of Free LDH/GDH and LDH/GDH-aZIF-90.

Fig. S13: SEM image of LDH/GDH-aZIF-90 biocatalysts after reusability experiments.

Samula	Concentrations of precursors	Concentrations of precursors HICA		
Sample	Zn(NO ₃) ₂ .6H ₂ O (mM)	(mM)		
1	40	160		
2	40	120		
3	40	80		
4	40	40		
5	40	20		
6	30	150		
7	30	120		
8	30	90		
9	30	60		
10	30	30		
11	30	15		

 Table S1 LDH/GDH-ZIFs composites formed at different precursor concentrations

Table	S2	HPLC	detection	parameters
1 4010	~	111 20		parameters

Parameters	Detecting Condition		
Chromatographic Column	Hypersil ODS C ₁₈ (250 mm×4.6 mm, 5 μm)		
Mobile Phase	0.1% HCOOH: CH ₃ CN=3: 1		
Flow Rate	1.0 mL/min		
Wavelength	210 nm		
Injection Volume	20 µL		
Column Temperature	40 °C		

Ratio of LDH: GDH	Volume of LDH	Volume of GDH
3: 1	150	50
2: 1	133	67
1:1	100	100
1:2	67	133
1:3	50	150

Table S3 LDH/GDH-ZIFs composites formed at different ratios of LDH: GDH

Table S4 Adsorption average pore width (4V/A by BET) of the LDH/GDH-ZIF-90,

aZIF-90 and LDH/GDH-aZIF-90

Sample	Adsorption average pore width (4V/A by BET)
LDH/GDH-ZIF-90	2.2 nm
aZIF-90	18.1 nm
LDH/GDH-aZIF-90	22.3 nm

strategies	reaction condition	reaction system	specific enzyme activity (U·mg⁻¹)	productivity (%)	reference
two-enzyme expression	рН=7, 35 °С	50 g/L PPA, 6.1 g/L Glu	/	87.6	1
two-enzyme expression	рН=7, 42 °С	50 mM PPA, 100 mM Glu	9.48 ± 0.91	97.83	2
two-enzyme expression	рН=5, 40 °С	100 mM PPA, 120 mM Glu, 0.1mM NAD ⁺	447.6	90.0	3
Two-enzyme immobilization	рН=7, 30 °С	10 mM PPA, 10 mM Glu,	1.77±0.19	99.0%±5.6%	This work

Table S5 Comparison with other reported LDH/GDH system

	10	mM			
	N	AD^+			
Table S6 Enzyme kinetic parameter					
parameters $K_m(mM) = V_{max}(U \cdot mg^{-1}) = k_{cat}(s^{-1}) = k_{cat}/K_m(mM^{-1} \cdot s^{-1})$					
LDH	3.85	2.15	1.67	0.43	
LDH-aZIF-90	4.12	2.07	1.66	0.40	
LDH/GDH	4.70	2.60	2.08	0.44	
LDH/GDH-aZIF-90	4.59	2.57	2.06	0.45	

References

- 1 X. Luo, Y. Zhang, L. Yin, W. Zheng and Y. Fu, *3 Biotech*, 2020, **10**, 14.
- 2 Y. Zhu, Y. Wang, J. Xu, J. Chen, L. Wang and B. Qi, *Molecules*, 2017, 22, 1966.
- D. Zhang, T. Zhang, Y. Lei, W. Lin, X. Chen and M. Wu, *Front. Bioeng. Biotechnol.*, 2022, 10, 846489.