Electronic Supplementary Information (ESI)

Daphnia-inspired dynamic slippery chemically bonded liquid surface for active prevention of covalently attached foulants adhesion

Huajun Zhai, ^a Xiangyu Li, ^b Shuaiheng Zhao, ^a Jiujiang Ji, ^a Yue Liu, ^a Ye Tian, ^a Yen Wei, ^a Na Liu *^a and Lin Feng *^a

- a. Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, 100084, China. E-mail: liun12@tsinghua.org.cn; fl@mail.tsinghua.edu.cn
- b. Shenyang National Laboratory for Materials Science, Electrobiomaterials Institute, Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), Northeastern University, Shenyang 110819, China

Fig. S1 FTIR spectrum of SiO₂ electro-deposited Al substrate.

Fig. S2 FTIR spectrum of PDMS-free surface.

Fig. S3 XPS spectrum of PDMS-free surface.

Fig. S4 Elemental mappings of the PNIPAM-free surface and D-SCBLs.

Fig. S5 Water CAs, ϑ_A , ϑ_R , CAH, and α of D-SCBLs prepared with different concentrations (wt%) of NIPAM.

Fig. S6 CAs of various liquids on the D-SCBLs.

Video S1 Sliding test of water droplet on the D-SCBLs.

Fig. S7 (a, b) Chemical resistance and mechanical durability tests of the D-SCBLs as a function of immersion times in acidic, alkaline and saline solutions together with water stream scouring time, respectively.

Fig. S8 Droplets motion on the D-SCBLs with Y-shaped path as a transportation channel. Two water droplets were dyed blue and green, respectively.

Fig. S9 Photographs of the dynamic underwater oil-adhesion measurements on the D-SCBLs. An engine oil droplet (3 μ L) was utilized as the detecting probe to contact and leave the surface.

Fig. S10 Water CAs of the PNIPAM-free surface and D-SCBLs.

Fig. S11 Dynamic process of a seawater droplet motion at the boundary between D-SCBLs and PNIPAM-free surface.

Dual responsive anti-adhesion material

Fig. S12 Schematic illustration of a possible designed dual responsive anti-adhesion material derived from the D-SCBLs.

Fig. S13 XPS spectra of D-SCBLs after being immersed in BSA solution under heating or without heating processing, respectively.

Fig. S14 AFM images of D-SCBLs after being immersed in BSA solution under heating or without heating processing, respectively.

Fig. S15 XPS spectra of the D-SCBLs and PNIPAM-free surface after being immersed in dopamine solution for 6 h, respectively.

Fig. S16 AFM images of the PNIPAM-free surface and D-SCBLs after being immersed in dopamine solution for 6 h, respectively.

Fig. S17 Water CA variations of the PNIPAM-free surface and D-SCBLs after being immersed in dopamine solution for 6 h, respectively.

Fig. S18 FTIR spectra of the PNIPAM-free surface and D-SCBLs after being immersed in dopamine solution for 6 h, respectively.

Fig. S19 Schematic illustration of the anti-adhesion mechanism of D-SCBLs.

Fig. S20 F-D curves of PDA-modified AFM tip interacting with the pristine D-SCBLs.