Electronic Supporting Information

Quercetin@Gd³⁺ doped Prussian blue nanocube induces pyroptotic death of MDA-MB-231 cells: combinational targeted multimodal therapy, dual modal MRI, intuitive modelling of $r_{1-}r_{2}$ relaxivities

Panchanan Sahoo^{†,‡}, Pulak Jana^{§,†}, Sudip Kundu[†], Snehasis Mishra[†], Krishnananda Chattopadhyay[§], Abhishek Mukherjee^{#,‡}, Chandan Kumar Ghosh^{*,†}

[†]School of Materials Science and Nanotechnology, Jadavpur University, Kolkata-700032, India

[‡]Agricultural and Ecological Research Unit, Biological Science Division, Indian Statistical Institute, Giridih, Jharkhand, India

[§]Structural Biology & Bio-Informatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mallick Road, Kolkata 700032, India

[†]Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh-201002, India

Calculation of the photothermal conversion efficiency:

One of the most extensively used equation to determine photothermal conversion efficiency of PB, GPB and GPBA nanocubes (NC) under 808 nm (5.26 W·cm⁻², total power 1 W) laser irradiation is described as follows:^{1,2}

$$\eta = \frac{hA(T_{max} - T_{sur}) - Q_w}{I(1 - 10^{-A_{808}})}$$
(S1)

Where h and A are the heat transfer coefficient and surface area of the quartz cuvette in which aqueous solution of the NC samples have been exposed under irradiation; T_{max} is steady state temperature of the NC aqueous solution; T_{sur} is the surrounding temperature; Q_w is associated with the converted energy by quartz cuvette contained only aqueous solution from radiant energy which is determined to be 8.4 mW; I is the power of incident NIR laser beam and A_{808} is the absorbance of the particular NC sample at a wavelength of 808 nm.

Herein, to find out hA value, a dimensionless force temperature (θ) has been introduced which is associated with the T_{max} .

$$\theta = \frac{T - T_{sur}}{T_{max} - T_{sur}}$$
(S2)

And another parameter known as time constant related to the NC sample is defined as

$$\tau_s = \frac{\sum_i m_i c_{pi}}{hA} \tag{S3}$$

Where, $\sum_{i} m_{i} c_{pi}$ is the product of mass and heat capacity of quartz cuvette, NC sample and solvent in the system. Thus, τ_{s} can be calculated from the following equation by considering cooling period of the solution:

$$t = -\tau_s ln\theta \tag{S4}$$

Then, η can be intended after findings hA value followed by equation S1.

Figure S4(a-e) represents linear plot between cooling period (t) and $-\ln\theta$ with slope τ_s to be 562.46, 585.47, 557.09, 608.43 and 688.59 s corresponding to PB, GPB_{0.25}, GPB_{0.5}, GPB_{0.75} and GPBA respectively. Finally, photothermal conversion efficiency is calculated to be 33.85, 51.25, 65.56, 51.45 and 35.49% respectively.

Sample Name	FeCl ₃ .6H ₂ O (mmol)	$Gd(NO_3)_3.6H_2O (mmol)$
PB	0.0198	0.00
GPB _{0.25}	0.0148	0.0049
GPB _{0.50}	0.0099	0.0099
GPB _{0.75}	0.0049	0.0148
GPBA	0.00	0.0198

Table S1: Feeding amounts of reactants during synthesis in Solution A

Table S2: Variation in the occupancy probability of the different atoms in the unit cell

 structure of PB, GPB and GPBA as obtained by Rietveld analysis using the Maud software

Atom	site	PB , R _p =18.68, R _{wp} =15.71		GPB _{0.25} , $R_p=16$.55, R _{wp} =13.42
		Position (x)	Occupancy	Position (x)	Occupancy
Fe ³⁺	la	0.0	1.0	0.0	0.7732842(20)
	3c	0.0	1.0	0.0	0.9133229(8)
Fe ²⁺	1b	0.50486345(9)	0.6592583(21)	0.5	0.75717217(23)
	3d	0.5002564(13)	0.7803208(17)	0.5	0.8512476(11)
N	6e	0.20095892(5)	0.7803186(23)	0.21973883(21)	0.6524139(17)

	6f	0.20777132(6)	0.6590573(8)	0.19607785(19)	0.68172204(26)
	12h	0.3086982(18)	0.7803359(19)	0.29398748(9)	0.7618029(9)
С	6e	0.31160247(2)	0.7803157(12)	0.2527187(13)	0.7553462(21)
	6f	0.2108135(8)	0.6592680(10)	0.3369625(17)	0.5803227(25)
	12h	0.19350913(21)	0.7803082(13)	0.24345358(7)	0.8885231(11)
0	6e	0.20546116(6)	0.2196236(24)	0.28894728(15)	0.20116886(13)
	6f	0.31103197(8)	0.3418713(15)	0.19607785(8)	0.3532405(20)
	12h	0.21343586(11)	0.2196520(17)	0.2519634(13)	0.19178203(6)
0	8g	0.28311816(7)	0.9769835(23)	0.24846497(4)	1.0557612(3)
Gd ³⁺	la	0.0		0.0	0.2878626(8)
	3c	0.0		0.0	0.024392676(3)

Atom	site	GPB _{0.50} , R_p =18.01, R_{wp} =16.70		GPB _{0.75} , R _p =15.01, R _{wp} =12.36	
		Position (x)	Occupancy	Position (x)	Occupancy
Fe ³⁺	1a	0.0	0.19958599(6)	0.0	0.04379456(3)
	3c	0.0	0.6955486(7)	0.0	0.22820742(4)
Fe ²⁺	1b	0.5	0.8748906(7)	0.5	0.8925268(5)
	3d	0.5	0.72967404(6)	0.5	0.6744579(10)
N	6e	0.24126482(11)	0.29024577(8)	0.22482389(5)	0.34185156(28)
	6f	0.22089453(8)	0.87297755(11)	0.20800404(2)	0.935618(11)
	12h	0.2812284(9)	0.7125842(7)	0.29865497(1)	0.83086663(13)
С	6e	0.28790888(17)	0.711003(9)	0.23690972(1)	0.96722984(22)
	6f	0.3432895(12)	0.8710056(7)	0.3080017(2)	0.96336(15)
	12h	0.17622626(8)	0.7115617(6)	0.19111414(1)	0.93343514(14)
0	6e	0.26116607(16)	0.29032323(6)	0.22464009(3)	0.36714977(9)
	6f	0.21971194(21)	0.13004822(4)	0.2045692(3)	0.083756045(7)
	12h	0.2779372(7)	0.2905587(4)	0.2578505(1)	0.36965746(6)
0	8g	0.27506152(13)	0.98139584(8)	0.27008986(1)	0.9853173(17)
Gd ³⁺	1a	0.0	0.7909804(8)	0.0	0.8079837(13)
	3c	0.0	0.29800105(2)	0.0	0.60148686(9)
	3c	0.0	0.29800105(2)	0.0	0.60148686(9)

Atom	site	GPBA , R _p =11.75, R _{wp} =14.95		
		Position (x)	Occupancy	

Gd ³⁺	1a	0.0	1
	3c	0.0	1
Fe ²⁺	1b	0.5	0.40191638(8)
	3d	0.5	0.8972872(5)
N	6e	0.28806(14)	0.8323061(12)
	6f	0.43577(17)	0.31923234(17)
	12h	0.3258(7)	0.9944583(14)
С	6e	0.27169(21)	0.9518085(8)
	6f	0.43577(4)	0.37184647(2)
	12h	0.19898(6)	0.878701(3)
0	6e	0.57235(11)	0.1460648(6)
	6f	0.43577(14)	0.6850089(12)
	12h	0.86476(9)	0.17641485(15)
0	8g	0.28206(3)	0.97429556(4)

Table S3: Elemental analysis as obtained from FESEM-EDX measurement

Sample	at% of Fe	at% of Gd	at% of N
GPB _{0.25}	28.60	0.05	42.67
GPB _{0.50}	23.47	0.35	52.19
GPB _{0.75}	12.81	0.43	73.31
GPBA	10.81	1.21	66.37

Fig. S1: (a)Reitveld refinement of PB XRD pattern with difference between experimental and refined patterns. (b) Unit cell structure of representative GPB_{0.50} nanocube. (c) TGA plot of PB.

Fig. S2: (a) FESEM image and size distribution histogram in the inset of PB nanocubes. EDX spectrum of (b) GPB_{0.25}, (c) GPB_{0.50} and (d) GPBA nanocubes.

Fig. S3: ICP-OES measurement to find percentage Fe^{3+} content in bare PB and GPB samples (initial concentration of exposed samples was 40 μ g/mL).

Fig. S4: Thermographs of (a) DI, (b) PB, (c) $\text{GPB}_{0.25}$, (d) $\text{GPB}_{0.75}$, (e) GPBA nanocubes sample under 808 nm NIR laser irradiation over 10 minutes.

Fig. S5: Plot and linear fit of time versus negative natural logarithm of the temperature

increment for the cooling rate of (a) PB, (b) $GPB_{0.25}$, (c) $GPB_{0.50}$, (d) $GPB_{0.75}$ and (e) GPBA under 808 nm laser.

Fig. S6: Concentration dependant T_2 weighted MR images at 3 T showing hypo intensity from PB, GPB_{0.25}, GPB_{0.50}, GPB_{0.75} and GPBA using spin-echo sequences with TR: 1770 ms

and variable TE of (a) 13.3 ms, (b) 26.6 ms, (c) 53.2 ms, (d) 66.5 ms, (e) 79.8 ms and (f) 93.1 ms.

Fig. S7: Concentration dependent (a) T_1 and (b) T_2 relaxation rates. The relaxivities values were determined to be $r_1 \sim 5.91$, 7.05, 10.06, 11.69 11.84 mM⁻¹s⁻¹ and $r_2 \sim 15.82$, 18.07, 24.96, 28.72 31.39 mM⁻¹s⁻¹.

Fig. S8: Concentration dependant T_1 weighted MR images at 3 T showing brightening effect from PB, GPB_{0.25}, GPB_{0.50}, GPB_{0.75} and GPBA using 3D gradient spin-echo sequences with TR: 15 ms, TE: 2.71 ms and variable flip angle of (a) 5⁰ and (b) 25⁰.

Fig. S9: SQUID magnetometry. Isothermal magnetization as a function of field at 300 K for (a) PB, (b) GPB_{0.25}, (c) GPB_{0.50}, (d) GPB_{0.75} and (e) GPBA nanocubes sample. (f) Magnetization at 3T as a function of different Gd^{3+} doping in PB nanocubes at 300 K.

Fig. S10: (a) CLSM bright field image showing the induction of cell membrane disruption and nuclear condensation by GPB_{0.50}@PDA@PEG@HA@Qu under 10 minute laser exposure in MDA-MB-231 cells.

Fig. S11: ICP-OES analysis to quantify Fe uptake in HEK 293 and MDA-MB-231 cell. After 24 hr of incubation with 15 and 30 μ g/mL of the GPB_{0.50}@PDA@PEG@HA nanocomposite, HEK 293 and MDA-MB-231 cell pellets were collected and acid digested for measurement.

Supporting information references.

- 1. K. C. Li, H. C. Chu, Y. Lin, H. Y. Tuan and Y. C. Hu, ACS applied materials & interfaces, 2016, 8, 12082-12090.
- 2. Z. H. Li, Y. Chen, Y. Sun and X. Z. Zhang, ACS nano, 2021, 15, 5189-5200.