Synthesis, nanostructuring and *in silico* studies of a new imine bond containing macroheterocycle as a promising PBP-2a non-β-lactam inhibitor

Alakbar Huseynzada^{*a,c,e,p}, Mirjavid Aghayev^d, Sarvinaz Hajiyeva^{a,q}, Aygun Israyilova^{b,c,f,o,p}, Koray Sayin^g, Eldar Gasimov^h, Fuad Rzayevⁱ, Ulviyya Hasanova^{a,c,p}, Goncha Eyvazova^j, Vagif Abbasov^k, Zarema Gakhramanova^c, Sanam Huseynova^o, Parvana Huseynova^l, Lala Huseynova^m, Nigar Salimovaⁿ

^aICRL, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan.

^bLaboratory of Microbiology and Virology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan. ^cGPOGC SRI, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan.

^dDepartment of Pharmaceutical Sciences, Northeast Ohio Medical University, 4209 St, OH-44, Rootstown, OH 44272, USA

^eChemistry Department, Azerbaijan Engineers Union, Bashir Safaroglu 118, Baku, AZ 1009, Azerbaijan ^fResearch Institute of Crop Husbandry, Ministry of Agriculture, Baku, AZ 1098, Azerbaijan

^gChemistry Department, Faculty of Science, Sivas Cumhuriyet University, Sivas, 58140, Türkiye

^hDepartment of Cytology, Embryology and Histology, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan

ⁱLaboratory of Electron Microscopy of the SRC, Azerbaijan Medical University, 163 A Samad Vurgun, Baku AZ1078, Azerbaijan

^jNanoresearch Center, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan ^kInstitute of Petrochemical Processes, K. Avenue 30, Baku, AZ 1005, Azerbaijan

¹Chemistry Department, Ganja State University, H. Aliyev 429, Ganja, AZ 2001, Azerbaijan

^mIndustrial Safety and Labor Protection Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan

ⁿPetrochemical Technology and Industrial Ecology Department, Azerbaijan State Oil and Industry University, Baku, AZ 1010, Azerbaijan

^oDepartment of Molecular Biology and Biotechnology, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan

PICESCO Biomedical Materials Department, Baku State University, Z. Khalilov 23, Baku, AZ 1148, Azerbaijan ^qPhysics Department, Kent State University, 800 E. Summit St., Kent, OH 44242, USA

Supplementary Materials

Table of contents

1.	NMR spectra	2
2.	MS spectrum	4
3.	FTIR spectra	5
4.	PXRD data	6
5	Statistical analyses	7
0.	Statistical analyses.	•• /

Figure 7S. FTIR spectrum of the magnetite nanoparticles

Figure 8S. FTIR spectrum of the MHC3@Fe3O4

Phase	nase Formula Figure of me		Phase reg. detail	DB card number
name				
Magnetite Fe ₃ O ₄		0.789	ICDD (PDF-2/Release 2011 RDB)	00-001-1111
Phase name	Formula	Space group	Phase reg. detail	DB card number
Magnetite	Fe ₃ O ₄	227 : Fd-3m,choice-2	ICDD (PDF-2/Release 2011 RDB)	00-001-1111

 Table 1S. Powder XRD qualitative results and peak list of the MHC3@Fe3O4

No.	2- theta(deg)	Interplanar spacing (<i>d</i> spacing) (A°)	Height(cps)	FWHM(deg)	Int. I(cps deg)	Int. W(deg)	Asym. factor	Miller indices (hkl)
1	12.6(3)	7.04(15)	246(20)	2.6(2)	691(97)	2.8(6)	0.9(4)	(111)
2	30.13(4)	2.964(4)	1221(45)	0.68(5)	1208(64)	0.99(9)	0.9(3)	(220)
3	35.536(13)	2.5242(9)	3873(80)	0.633(12)	3094(57)	0.80(3)	1.18(1	(311)
4	43.17(6)	2.094(3)	949(40)	0.74(8)	1164(59)	1.23(11)	1.1(5)	(400)
5	57.07(4)	1.6126(11)	1193(45)	0.72(4)	911(63)	0.76(8)	0.9(2)	(333) (511)
6	62.75(3)	1.4796(7)	1738(54)	0.79(3)	1676(62)	0.96(7)	1.1(2)	(440)

Table 2S.	Crystallite siz	ze of the M	HC3@Fe ₂ O ₄
	Ci y Starrice Siz		1105 @1 0304

Data set name	Crystallite size(A)	Phase name	Crystallite size(A)
MHC3@Fe ₃ O ₄	91(12)	Magnetite	91(12)

All the MIC experiments were done in triplicate (Table 1). The box and whisker plot does not demonstrate any variations in the results, because the MIC test done by the application of resazurin disodium salt is considered a precise method, which if performed appropriately and for individual compounds provides identical values for each compound in triplicate (Figure 1).

MIC, µg/mL Bacterial MHC3 MHC3 MHC3 MHC3 MHC3 MHC3 Fe₃O₄ Ampicillin Ampicillin strains NPs (a)Fe₃ (a)Fe₃ (a)Fe₃ O_4 O_4 O_4 К. 512 512 512 >1024 >1024 >1024 512 512 _ pneumoniae Р. 256 256 256 1024 1024 1024 512 512 _ aeruginosa S. aureus 32 32 32 0.5 0.5 0.5 16 16 _

Figure 9S. The Box and Whisker plot for the results of the 96-well microtiter assay

The two-way and post hoc ANOVA were applied to the obtained results by using GraphPad 9 forWindows, GraphPad Software, CA, Prism (version San Diego, USA. www.graphpad.com). Post hoc analysis by two-way ANOVA was applied as multiple comparisons in three families (Figure 2, Table 2). The antibacterial activity of tested compounds on three bacterial strains was compared with each other and ampicillin as a control. The adjusted P value is less than 5%, so the obtained results can be considered significantly different. The only not significant difference has been observed for ampicillin and MHC3 activity towards Klebsiella pneumoniae because values of MIC for both compounds were equal to $512 \,\mu g/mL$.

Figure 10S. ANOVA: Tukey's multiple comparisons results

Table 19	ANOVA	Tulzav'a	multipla	anmaricana	rogulto
1 abie 45.	ANOVA.	TUKEY S	muniple	comparisons	resuits

Number of comparisons per family	3							
Alpha	0.05							
Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Below threshold?	Summ ary	Adjusted P Value			
K. pneumoniae								
MHC3 vs. MHC3@Fe ₃ O ₄	-513.0	-514.2 to - 511.8	Yes	****	<0.0001			
MHC3 vs. Ampicillin	-1.000	-2.203 to 0.2031	No	ns	0.1135			
MHC3@Fe₃O₄ vs. Ampicillin	512.0	510.8 to 513.2	Yes	****	<0.0001			
P. aeruginosa								
MHC3 vs. MHC3@Fe ₃ O ₄	-768.0	-769.2 to - 766.8	Yes	****	<0.0001			
MHC3 vs. Ampicillin	-256.0	-257.2 to - 254.8	Yes	* * * *	<0.0001			
MHC3@Fe ₃ O ₄ vs. Ampicillin	512.0	510.8 to 513.2	Yes	****	<0.0001			
S. Aureus								
MHC3 vs. MHC3@Fe ₃ O ₄	31.50	30.30 to 32.70	Yes	****	<0.0001			
MHC3 vs. Ampicillin	16.00	14.80 to 17.20	Yes	****	<0.0001			
MHC3@Fe ₃ O ₄ vs. Ampicillin	-15.50	-16.70 to - 14.30	Yes	****	<0.0001			
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	N1	N 2	q	DF
K. pneumoniae								
MHC3 vs. MHC3@Fe ₃ O ₄	512.0	1025	-513.0	0.4714	3	3	153	18.

							9	00
MHC3 vs. Ampicillin	512.0	513.0	-1.000	0.4714	3	3	3.0 00	18. 00
MHC3@Fe₃O₄ vs. Ampicillin	1025	513.0	512.0	0.4714	3	3	153 6	18. 00
P. aeruginosa								
MHC3 vs. MHC3@Fe ₃ O ₄	256.0	1024	-768.0	0.4714	3	3	230 4	18. 00
MHC3 vs. Ampicillin	256.0	512.0	-256.0	0.4714	3	3	768 .0	18. 00
MHC3@Fe₃O₄ vs. Ampicillin	1024	512.0	512.0	0.4714	3	3	153 6	18. 00
S. Aureus								
MHC3 vs. MHC3@Fe ₃ O ₄	32.00	0.5000	31.50	0.4714	3	3	94. 50	18. 00
MHC3 vs. Ampicillin	32.00	16.00	16.00	0.4714	3	3	48. 00	18. 00
MHC3@Fe₃O₄ vs. Ampicillin	0.5000	16.00	-15.50	0.4714	3	3	46. 50	18. 00