Electronic Supplementary Material (ESI) for Journal of Materials Chemistry B. This journal is © The Royal Society of Chemistry 2023

Support Information

Supporting Information

for

Zwitterionic nanocapsules-based wound dressing with function of gradient release multi-drugs for efficient wound healing

Jiahui Zhou,^{a,+} Kaishun Xia,^{b,+,*} Yuting Li,^{a,+} Shihua Mao,^a Yucong Gu,^a Mengjie Si,^a Shuaibing Wang,^a Guangyan Du,^{a,*} Yisheng Xu,^c Dong Zhang,^d Si Yu Zheng,^{a,*} Jintao Yang^{a,*}

^a Zhejiang Key Laboratory of Plastic Modification and Processing Technology, College of Materials Science& Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

E-mails: duguangyan@zjut.edu.cn; zhengsiyu@zjut.edu.cn; yangjt@zjut.edu.cn

^b Department of Orthopedics, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, P. R. China.

E-mails: xks@zju.edu.cn

^c School of Chemical Engineering. East China University of Science and Technology, Shanghai 200237, PR China.

^d The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States.

+ These authors contributed equally to this work.

Run	The mass ratio of DVBAPS/SBMA	Amphi-RAFT agent (wt%)	Core/shell ratio	APS and TEMED (mmol·L ⁻¹)	Tween 80 and Span 80 (wt%)
1	2/1	6	1/1	5.04	0.5
2	3/1	6	1/1	5.04	0.5
3	4/1	6	1/1	5.04	0.5
4 ^a	2/1	6	1/1	5.04	0.5
5 ^a	3/1	6	1/1	5.04	0.5
6 ^a	4/1	6	1/1	5.04	0.5
7 ^b	3/1	6	1/1	5.04	0.5

Table S1. The recipe for adjusting UCST of zwitterionic nanocapsules.

^a The ZNs loaded with Methyl Orange.

^b The ZNs loaded with bFGF.

Fig. S1 FTIR spectrum of ZNs with different DVBAPS/SBMA copolymerization ratios.

Support Information

Fig. S2 Salt-responsive behavior of the prepared ZNs. (a) Hydrodynamic diameters of the prepared ZNs with different mass ratios of DVBAPS/SBMA in water, PBS and 0.9 wt% NaCl. (b) Volume swelling ratios of ZNs with different mass ratios of DVBAPS/SBMA in PBS and 0.9 wt% NaCl.

Support Information

Fig. S3 The SEM images of (a) inner fiber and (b) outer fiber of double-layer cotton fibers.

Support Information

Fig. S4 The SEM images of (a) inner surface and (b) outer surface of ZNs@cotton fabric.

Fig. S5 Standard curve of norfloxacin (λ =324 nm) plotted by UV-vis; (b) standard curve of bFGF drawn by a microplate reader.