Supporting information

Synthetic macromolecular peptide-mimetics with amino acid substructure residues as protein stabilising excipients

Ruggero Foralosso, ${ }^{\text {a }}$ Rafał Jerzy Kopiasz, ${ }^{\text {a,b }}$ Cameron Alexander, ${ }^{\text {a }}$ Giuseppe Mantovani ${ }^{\text {a }}$ and Snow Stolnik ${ }^{\text {a }}$
aUniversity of Nottingham, School of Pharmacy, NG7 2RD, UK
${ }^{\text {b }}$ Warsaw University of Technology, Faculty of Chemistry, Noakowskiego 3 St., 00-664, Warsaw, Poland

\qquadChemical characterisation methods2

1) Chain transfer agent (CTA) synthesis 3
2) Peptides synthesis 4
2.1) Gly-Ile-Leu-GIn-Ile-Asn-Ser-Arg-Trp (GILQINSRW). 4
2.2) Gly-Ile-Leu-GIn-Ile-Asn-Ser-Arg-Gly. 5
3) Synthesis of HEAn-peptide conjugates. 6
3.1) HEA go-GILQINSRW $^{-G}$ 6
3.2) HEA g5-GILQINSRG $^{\text {G }}$ 8
4) Synthesis of control homopolymers HEA $_{36}$ and HEA $_{100}$ 10
5) Synthesis of block co-polymeric peptide mimetics 11
5.1) Synthesis of IND, PHEN and MTB monomers 11
5.2) Synthesis of oligomeric chain transfer agents $I_{m} D_{m}$ PHEN $_{m}$, and MTB $_{m}$ 12
5.3) Synthesis of IND ${ }_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$, and MTB $_{m}-$ HEA $_{n}$ 15
5.3.1) SEC traces of IND $m_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$ and MTB $_{m}-$ HEA $_{n}$ 19
5.3.2) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{IND}_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$ and MTB $_{m}-$ HEA $_{n}$ 19
6) Methods 29
Analysis of polymers self-assembly by dynamic light scattering 29
Surface tension measurements of $\mathrm{IND}_{3}-b-\mathrm{HEA}_{98}$ and $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$ solutions 29
Lysozyme aggregation assay 29
Insulin aggregation experiment. 29
Insulin aggregation study: Circular Dichroism analysis 29
IDR1018 peptide aggregation study 30
7) Other supporting data 30
References 32

Materials and methods

Materials

N -hydroxyethylacrylamide, indole 3 -acetic acid, phenylacetic acid, methylbutyric acid, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide•HCl, 4-dimethylaminopyridine, bovine pancreatic insulin, hen egg lysozyme, DPBS buffer, N, N-diisopropylethylamine (DIPEA), triethylamine (TEA), 4,4'-azobis(4-cyanovaleric acid) (V-501), biotech grade DMF, anhydrous dichloromethane, anhydrous MeOH , piperidine, $\mathrm{Fmoc}-\mathrm{leu}-\mathrm{OH}, \mathrm{Fmoc}-\mathrm{ile}-\mathrm{OH}, \mathrm{Fmoc}-\mathrm{arg}(\mathrm{pbf})$ -
 (4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methyl-morpholinium chloride) (DMTMM), ethylene-dioxy-bis-ethylamine, 1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3 -oxid hexafluorophosphate (HATU) were obtained from Sigma-Aldrich (St. Louis, Missouri, United States). Azobisisobutyronitrile (AIBN) was purchased from FUJIFILM Wako Pure Chemical, Ltd.

Isopropanol, methanol, dichloromethane (DCM), ethyl acetate, diethyl ether, chloroform, tetrahydrofuran (THF), petroleum ether, N, N-dimethylformamide (DMF) and acetone were purchased from Fisher Scientific (Bishop Meadow Rd, Loughborough, UK).

Di-tert-butyl dicarbonate, fluorescein isothiocyanate and disuccinimidyl carbonate were obtained from Sigma-Aldrich (St. Louis, Missouri, United States). 2,2'-Azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) was purchased from Wako Pure Chemical Industries. 3-[Dimethyl-(2-hydroxyethyl)ammonio]-1-propanesulfonate betaine was purchased from Merck Biosciences Ltd, Padge Rd, Beeston, UK.

Peptide IDR 1018 was a kind gift from Medlmmune LTD (Cambridge, United Kingdom).

Chemical characterisation methods

${ }^{1} \mathrm{H}$ NMR spectra were recorded at $25^{\circ} \mathrm{C}$ on a Bruker Advance III 400 MHz spectrometer. All chemical shifts are reported in ppm (δ) referenced to the chemical shifts of residual solvents resonances of DMSO- d_{6} (2.50 ppm for ${ }^{1} \mathrm{H}$ and 39.52 ppm for ${ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{spectra)} \mathrm{and} \mathrm{CDCl}_{3}$ (7.26 ppm for ${ }^{1} \mathrm{H}$ and 77.16 ppm for ${ }^{13} \mathrm{C}$ NMR spectra).

Size exclusion chromatography: a Polymer Laboratories PL-50 instrument equipped with differential refractive index (DRI), viscometry (VS) and dual angle light scatter (LS) was used for SEC analysis. The system was fitted with $2 \times$ PLgel Mixed D columns ($300 \times 7.5 \mathrm{~mm}$) and a PLgel $5 \mu \mathrm{~m}$ guard column. The eluent used was DMF with $0.1 \% \mathrm{LiBr}$. Samples were run at 1 ml min^{-1} at $50^{\circ} \mathrm{C}$.

Poly(methyl methacrylate) standards (Agilent EasyVials) were used for calibration between $955500-550 \mathrm{~g} \mathrm{~mol}^{-1}$. Analyte samples were filtered through a membrane
with $0.22 \mu \mathrm{~m}$ pore size before injection. Respectively, experimental molar mass ($M_{\mathrm{n}, \mathrm{SEC}}$) and dispersity (Ξ) values of synthesized polymers were determined by conventional calibration using Cirrus GPC software.

RP-HPLC was run at a flow rate of $1 \mathrm{~mL} / \mathrm{min}$, using a $20-80 \%$ acetonitrile gradient in Milli-q water $+0.1 \%$ TFA, on a C18 Zorbax Eclipse Plus C18 column ($3.5 \mu \mathrm{~m}, 95 \AA, 4.6 \times 12.5 \mathrm{~mm}$). Absorbance was recorded at $\lambda=280 \mathrm{~nm}$.

1) Chain transfer agent (CTA) synthesis

4-Cyano-4-(((ethylthio)carbonothioyl)thio)pentanoic acid (CTA)

Scheme S1. Synthesis of the chain transfer agent (CTA).
Sodium ethyl carbonotrithioate (CTA.a). NaH ($60 \mathrm{wt} \%$ in mineral oil, $2.82 \mathrm{~g}, 70.4 \mathrm{mmol}, 1.06$ eq.) was dispersed in diethyl ether (50 mL) and cooled down in an ice bath. Ethanethiol (4.35 $\mathrm{g}, 70.0 \mathrm{mmol}, 1$ eq.) was added dropwise under stirring to the suspension and the mixture was stirred for 10 minutes. $\mathrm{CS}_{2}(5.8 \mathrm{~mL}, 96 \mathrm{mmol}, 1.4 \mathrm{eq}$.) was then added dropwise to the suspension and the reaction was stirred at room temperature for 1 h . The resulting bright yellow solid was filtered and washed with diethyl ether, dried under vacuum (yield: 80%) and used for the following step without further purification. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}, \delta, \mathrm{ppm}\right)$: 2.94 (q, J=7.4 Hz, 2H, CH ${ }_{3} \mathrm{CH}_{2} \mathrm{~S}$), $1.13\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d ${ }_{6}$, $\delta, \mathrm{ppm}): 239.3,33.8,14.01$.

Dithiobis-ethyl carbonotrithioate disulfide (CTA.b). CTA.a obtained from the previous step was dissolved in 100 mL of an aqueous solution of $\mathrm{K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}(16 \mathrm{~g}, 49 \mathrm{mmol})$. The mixture was extracted with diethyl ether ($4 \times 500 \mathrm{~mL}$) and the organic layers were collected and dried over MgSO_{4}. Following filtration, the solvent was removed under reduced pressure, yielding product CTA.b as an orange, viscous oil. Yield: 56%; ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO-d ${ }_{6}, \delta, \mathrm{ppm}$): $3.32\left(\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 1.36\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO- d_{6}, $\delta, \mathrm{ppm}): 221.91,33.10,12.98$.

4-Cyano-4-(((ethylthio)carbonothioyl)thio)pentanoic acid (CTA). CTA.b ($2.80 \mathrm{~g}, 13.2 \mathrm{mmol}, 1$ eq.) and V501 ($5.38 \mathrm{~g}, 19.2 \mathrm{mmol}, 1.45 \mathrm{eq}$.) were dissolved in 1:1 v/v ethyl acetate:methanol $(80 \mathrm{~mL})$. The solution was degassed for 30 min by argon bubbling, under stirring, then heated to reflux for 17 h . The volatiles were then removed under reduced pressure, and the resulting yellow oily residue was purified by silica gel flash chromatography, using a petroleum ether: $\mathrm{Et}_{2} \mathrm{O}$ in gradient, from 9:1 to $7: 3 \mathrm{v} / \mathrm{v}$, as the mobile phase. Yield: 30%. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 3.33\left(\mathrm{q}, \mathrm{J}=7.4 \mathrm{~Hz}, \mathrm{kH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}\right), 2.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}\right)$, 2.53-2.39 (m, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$), $1.87\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$), 1.09 ($\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~S}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , DMSO-d6, δ, ppm): 218.19, 172.72, 119.10, 43.08, 31.08, 29.14, 23.74, 12.63; HRMS (ESI): m/z [M-H] ${ }^{+}$
calculated for $\mathrm{C}_{9} \mathrm{H}_{14} \mathrm{NO}_{2} \mathrm{~S}_{3}: 264.02$ and $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NNaO}_{2} \mathrm{~S}_{3}$: 286.00, found 264.02 and 285.99 , respectively; FT-IR: $2932 \mathrm{~cm}^{-1}, 2235 \mathrm{~cm}^{-1}\left(v_{\mathrm{C}=\mathrm{N}}\right), 1704 \mathrm{~cm}^{-1}\left(\mathrm{u}_{\mathrm{C}=\mathrm{O}}\right)$.

2) Peptides synthesis

2.1) Gly-Ile-Leu-GIn-Ile-Asn-Ser-Arg-Trp (GILQINSRW).

Gly-Ile-Leu-GIn(Trt)-Ile-Asn(Trt)-Ser(tBu)-Arg(Pbf)-Trp(tBu)-resin (1a). In a glass peptide synthesis vessel, 2-chlorotrytilchloride resin beads ($1.6 \mathrm{mmol} / \mathrm{g}, 1.8 \mathrm{~g}, 2.9 \mathrm{mmol}, 1 \mathrm{eq}$.$) were$ swelled in DMF for 30 min. Afterwards, the resin was washed with fresh DMF, anhydrous methanol, anhydrous DCM and suspended in DMF. The first amino acid, Fmoc-Trp-OH (3.16 $\mathrm{g}, 6.0 \mathrm{mmol}, 2$ eq.) was subsequently added to the suspension, followed by DIPEA ($2.1 \mathrm{~mL}, 15$ $\mathrm{mmol}, 5 \mathrm{eq}$.$) , and the resulting mixture was stirred for 60 \mathrm{~min}$. After washing with DMF, the resin was treated for 15 min with a mixture of anhydrous DCM/ anhydrous MeOH/ DIPEA (80:15:5 in volume) to cap any remaining reactive trityl group. Finally, the protecting Fmoc group was removed from the attached amino acid treating the resin with a $20 \% \mathrm{v} / \mathrm{v}$ piperidine solution in DMF for 30 min . The remaining 8 amino acids were attached following the same procedure: 2 eq. of Fmoc-protected amino acid were previously dissolved in DMF, mixed with 1.9 eq of HATU and 3 eq. of DIPEA. The solution was added to the resin and the resulting suspension was stirred for 60 min . Fmoc deprotection was performed with the same procedure described above. After each amino acid coupling and Fmoc deprotection step, the excess of reagents was removed from the reaction vessel by filtration, and the resin was washed with DMF, dry methanol, dry DCM, and suspended in DMF, yielding resin-bound protected peptide 1a.

GILQINSRW. To cleave and deprotect peptide, 1a was stirred in a mixture of TFA:water:triisopropylsilane (95:2.5:2.5 v/v, 10 mL for 200 mg of resin) for 90 min . The supernatant was then collected and dried under vacuum to $1 / 10$ of its volume. The peptide was finally precipitated in diethyl ether and dried overnight under reduced pressure. Yield: 47\%; HRMS (ESI): $m / z[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{49} \mathrm{H}_{80} \mathrm{~N}_{15} \mathrm{O}_{13}$: 1086.6055, found: 1086.6029; RP-HPLC retention time: 12.7 min, purity: 86%.

Figure S1. HRMS (ESI) analysis of GILQINSRW.

Figure S2. RE-HPLC chromatogram of GILQINSRW, UV detection at $\lambda=280 \mathrm{~nm}$. Purity was estimated by calculating the ratio between the peak area of the peptide and all detected peak areas.

2.2) Gly-Ile-Leu-GIn-Ile-Asn-Ser-Arg-Gly.

Gly-lle-Leu-GIn(Trt)-Ile-Asn(Trt)-Ser(tBu)-Arg(Pbf)-Gly-resin (2a). Resin-bound peptide 2a was synthesised in the same manner as 1a, but at the first stage Fmoc-Gly-OH was used instead of Fmoc-Trp(Boc)-OH.

GILQINSRG. Yield: 41\%; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{+}$calculated for $\mathrm{C}_{40} \mathrm{H}_{73} \mathrm{~N}_{14} \mathrm{O}_{13}: 957.5477$ and m / z $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calculated for $\mathrm{C}_{40} \mathrm{H}_{74} \mathrm{~N}_{14} \mathrm{O}_{13}$: 479.2775; found: 957.5452 and 479.2805 , respectively; RP-HPLC retention time: 8.5 min ; purity: 85%.

Figure S3. HRMS (ESI) analysis of GILQINSRG.

Figure S4. RP-HPLC chromatogram of GILQINSRG, UV detection at $\lambda=280 \mathrm{~nm}$. Purity was estimated by calculating the ratio between the peak area of the peptide and all detected peak areas.

3) Synthesis of HEAn-peptide conjugates.

3.1) HEA go-GILQINSRW

Gly-Ile-Leu-GIn(Trt)-Ile-Asn(Trt)-Ser(tBu)-Arg(Pbf)-Trp(Boc) RAFT agent (1b). 400 mg of resinbound peptide 1a (containing approximately 246 mg of attached, protected peptide, and 145 mg of starting resin, $1.60 \mathrm{mmol} / \mathrm{g}, 0.248 \mathrm{mmol}, 1 \mathrm{eq}$.) was swelled for 30 min in DMF. Then, CTA agent (CTA) ($196 \mathrm{mg}, 0.740 \mathrm{mmol}, 3 \mathrm{eq}$.), DIPEA ($173 \mu \mathrm{~L}, 0.992 \mathrm{mmol}, 4 \mathrm{eq}$.$) and HATU$ ($274 \mathrm{mg}, 0.720 \mathrm{mmol}, 2.9 \mathrm{eq}$.) were added, and the suspension was left under stirring at room temperature overnight. The resin beads were then repeatedly washed with DCM, and finally treated for 120 min with a DCM:TFE $8: 2 \mathrm{v} / \mathrm{v}$ solution (10 mL). The suspension was filtered and the filtrate was concentrated under vacuum yielding a protected peptide RAFT agent 1b. Yield 68%; HRMS (ESI): $m / z[\mathrm{M}-2 \mathrm{Na}]^{2+}$ calculated for $\mathrm{C}_{118} \mathrm{H}_{150} \mathrm{~N}_{16} \mathrm{Na}_{2} \mathrm{O}_{19} \mathrm{~S}_{4}$: 1134.9982 , found: 1134.9967.

Figure S5. HRMS (ESI) analysis of RAFT agent $\mathbf{1 b}$.

Figure S6. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}^{-} \mathrm{d}_{6}, 400 \mathrm{MHz}$) spectrum of RAFT agent $\mathbf{1 b}$.
(N-hydroxyethylacrylamide) go-Gly-Ile-Leu-Gln-Ile-Asn-Ser-Arg-Trp (HEA $_{90}$-GILQINSRW; 1). RAFT agent (1b) (1 eq., $220 \mathrm{mg}, 0.096 \mathrm{mmol}$) was dissolved in DMF (3 mL) and mixed with N -
hydroxyethyl acrylamide (100 eq., $1.12 \mathrm{~g}, 9.60 \mathrm{mmol}$). The solution was transferred into a small Schlenk tube equipped with a magnetic stirrer, which was placed in ice. Initiator V501 ($0.7 \mathrm{mg}, 0.002 \mathrm{mmol}, 0.1 \mathrm{eq}$) in DMF ($70 \mu \mathrm{~L}$), was added to the tube. The mixture was degassed for 30 min bubbling argon under stirring at $0^{\circ} \mathrm{C}$, and finally the tube was put in a paraffin oil bath at $70^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, checking the disappearance of acrylamide monomer signals in the 5-6.5 ppm region, until $\approx 80 \%$ conversion was reached. The polymer was then precipitated in THF and dried under high vacuum. Yield: 44\%; $M_{n, \text { NMR }}$: $12.5 \mathrm{kDa}, M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF}):}: 17.0 \mathrm{kDa}, \bigoplus 1.09$.

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}$) spectrum of protected HEA ${ }_{90}$-GILQINSRW.

To remove the trithiocarbonate chain-end, peptide-polyHEA ($350 \mathrm{mg}, 0.028 \mathrm{mmol}, 1$ eq.) was dissolved in DMF (5 mL) together with AIBN ($700 \mathrm{mg}, 2.4 \mathrm{mmol}, 80 \mathrm{eq}$.). The mixture was degassed in ice for 30 min by bubbling argon under stirring, and then put in an oil bath at $80^{\circ} \mathrm{C}$ overnight. The polymer-peptide conjugate was then precipitated in THF. The residue was redissolved in MeOH and precipitated again in THF. This precipitation procedure was repeated several times. The precipitate was finally dried under reduced pressure. Successful removal of the trithiocarbonate group was confirmed by UV spectrophotometry, which showed the disappearance of the band for the trithiocarbonate group at $\lambda=300 \mathrm{~nm}$. Yield: $60 \% ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}$: 16.8 kDa; Đ 1.08.

To remove the protecting groups, peptide-polyHEA (200 mg) was dissolved in a solution of 0.1 N HCl in hexafluoro-iso-propanol (5 mL). The solution was stirred for 6 h at room temperature, then the polymer conjugate was precipitated in diethyl ether, re-dissolved in water, dialysed against ultra-pure water (MWCO 3.5 kDa) for 48 h , and the final product HEA $_{90}-$ GILQINSRW was isolated by freeze-drying. Yield: 62%;. $M_{\mathrm{n}, \mathrm{NMR}}: 10.8 \mathrm{kDa}, M_{\mathrm{n}, \mathrm{EEC}(\mathrm{DMF})}$: 17.0 kDa, Đ 1.07.

$\begin{array}{llllllllllllllllllll}9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 1 & 1.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0\end{array}$

Figure S8. ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, 400 \mathrm{MHz}$) spectrum of deprotected HEA90-GILQINSRW.

3.2) HEA $_{95}$-GILQINSRG

Gly-Ile-Leu-GIn(Trt)-Ile-Asn(Trt)-Ser(tBu)-Arg(Pbf)-Gly RAFT agent (2b). RAFT agent 2b was synthesised in the same manner as RAFT agent 1b. Yield: 66\%; HRMS (ESI): m / z [M] calculated for $\mathrm{C}_{104} \mathrm{H}_{134} \mathrm{~N}_{15} \mathrm{O}_{17} \mathrm{~S}_{4}$: 1993.9004, found 1993.8901.

Figure S9. HRMS (ESI) analysis of RAFT agent $\mathbf{2 b}$.

Figure S10. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$) spectrum of RAFT agent $\mathbf{2 b}$.
poly(N-hydroxyethylacrylamide)-Gly-Ile-Leu-GIn-Ile-Asn-Ser-Arg-Gly (HEAgo-GILQINSRG; 2). Polymer HAE_{90}-GILQINSRG $\mathbf{2}$ was synthesised in the same manner as 1, using RAFT agent 2b instead of $\mathbf{1 b}$.
peptide-polyHEA after RAFT polymerisation. Yield: $47 \% ; M_{\mathrm{n}, \mathrm{NMR}}: 13.1 \mathrm{kDa}, M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}: 19.9$ kDa, Đ 1.18.
peptide-polyHEA after trithiocarbonate removal. Yield: 64\%; $M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}$: $15.0 \mathrm{kDa}, \mathrm{E} 1.13$. Final HEA ${ }_{95}-b$-GILQINSRG. Yield: $58 \% ; M_{\mathrm{n}, \mathrm{NM}}: 12.1 \mathrm{kDa}, M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}: 14.8 \mathrm{kDa}, \mathrm{D} 1.13$.

Figure S11. ${ }^{1} \mathrm{H}$ NMR (DMSO- $\mathrm{d}_{6}, 400 \mathrm{MHz}$) spectrum of deprotected HEA_{90}-GILQINSRG.

4) Synthesis of control homopolymers HEA $_{36}$ and HEA $_{100}$

Scheme S2. Synthesis of control homopolymers HEA 36 and HEA_{100}

Poly(N-hydroxyethyl acrylamide) (HEA 36.) $^{\text {) }}$. Chain transfer agent CTA ($150 \mathrm{mg}, 0.53 \mathrm{mmol}, 1$ eq.) and monomer HEA ($2.48 \mathrm{~g}, 21.2 \mathrm{mmol}, 40$ eq.) were dissolved with in DMF (3 mL). The mixture was transferred into a small Schlenk tube equipped with a magnetic stirrer, which was put in ice. Initiator V 501 ($17 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.1$ eq.), previously dissolved in DMF (170 $\mu \mathrm{L}$), was added to the tube. The mixture was degassed for 30 min bubbling argon under stirring at $0^{\circ} \mathrm{C}$, and finally put in a paraffin oil bath at $70^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, monitoring the disappearance of acrylamide monomer signals in the $5-6.5 \mathrm{ppm}$ region, until $\sim 80 \%$ conversion was reached. The polymer was then precipitated in THF and dried under high vacuum.

Yield: 80\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta, \mathrm{ppm}$): 7.80-7.40 (m, 36H, NH), 5.50-4.30 (m, 36H, $-\mathrm{CH}_{2} \mathrm{OH}$), $3.43\left(\mathrm{~m}, 72 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.26-3.00\left(\mathrm{~m}, 72 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}-\right), 2.10-1.70\left(\mathrm{~m}, 36 \mathrm{H}, \mathrm{CHCH}_{2}\right) 1.60-$ 1.20 ($\mathrm{m}, 72 \mathrm{H}, \mathrm{CHCH}_{2}$); $M_{\mathrm{n}, \text { тHEO: }} 4.5 \mathrm{kDa}$; $M_{\mathrm{n}, \text { SEC(DMF) }}: 8.5 \mathrm{kDa} ; ~ Ð=1.04$.

Poly(N-hydroxyethyl acrylamide) (HEA_{100}). Chain transfer agent CTA ($0.15 \mathrm{~g}, 0.53 \mathrm{mmol}, 1$ eq.) and N-hydroxyethyl acrylamide ($5.0 \mathrm{~g}, 42 \mathrm{mmol}, 80$ eq.) were dissolved in DMF (8 mL). The mixture was transferred into a glass tube equipped with a magnetic stirrer bar, which was put in ice. Initiator V501 ($16 \mathrm{mg}, 0.050 \mathrm{mmol}, 0.1 \mathrm{eq}$.), in DMF ($160 \mu \mathrm{~L}$), was added to the tube. The mixture was degassed for 30 min bubbling argon under stirring at $0^{\circ} \mathrm{C}$, and finally put on a paraffin oil bath at $70{ }^{\circ} \mathrm{C}$. The reaction was monitored by ${ }^{1} \mathrm{H}$ NMR, checking the disappearance of acrylamide monomer peaks into the 5-6.5 ppm region, until $\sim 80 \%$ conversion was reached. The polymer was then precipitated in THF and dried under high vacuum.

Yield: 72\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{d}_{6}$-DMSO, δ, ppm): 7.80-7.40 (m, 100H, NH), 5.10-4.70 (m, $100 \mathrm{H}, \mathrm{OH}$), $3.43\left(\mathrm{~m}, 200 \mathrm{H}, \mathrm{CH}_{2} \mathrm{OH}\right.$), $3.26-3.00\left(\mathrm{~m}, 200 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}-\right), 2.10-1.70(\mathrm{~m}, 100 \mathrm{H}$, CHCH_{2}), 1.60-1.20 ($\mathrm{m}, 200 \mathrm{H}, \mathrm{CHCH}_{2}$); $M_{\mathrm{n}, \text { THEO: }} 12.9 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})} 12.1 \mathrm{kDa} ; 母 1.14$.

5) Synthesis of block co-polymeric peptide mimetics

5.1) Synthesis of IND, PHEN and MTB monomers

INDOLE-3 ACETIC ACID

PHENYLACETIC ACID

IND

PHEN

MTB

Scheme S3. Synthesis of IND, PHEN and MTB monomers.

The synthesis of the acrylamide monomers IND, PHEN and MTB was carried out by reaction of 2-hydroxyethyl acrylamide (HEA) with 3-indole-acetic acid, phenyl-acetic acid and methylbutyric acid, respectively. In a typical reaction, a solution of EDC-HCl ($1.2 \mathrm{~g}, 6.3 \mathrm{mmol}$, 1.1 eq.) in anhydrous DCM (20 mL) was added dropwise over 1 h to a solution of 3-indoleacetic acid, phenyl-acetic acid, or methylbutyric acid ($5.7 \mathrm{mmol}, 1 \mathrm{eq}$.), DMAP ($0.07 \mathrm{~g}, 0.6$ $\mathrm{mmol}, 0.1 \mathrm{eq}$.) and HEA ($0.89 \mathrm{~mL}, 8.6 \mathrm{mmol}, 1.5 \mathrm{eq}$) in DCM (50 mL), at $0^{\circ} \mathrm{C}$. The reaction was then stirred for 16 hours at room temperature. The solution was washed twice with brine and twice with 2 M HCl . The organic phase was then dried over MgSO_{4}, filtered, and the solvent was removed under reduced pressure. The resulting monomers were used for the polymerisation experiments without further purification.

IND. Yield: 60%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), $8.68(\mathrm{~s}, 1 \mathrm{H}$, indole NH), 7.6 ($\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}$, 1 H , aromatic), $7.34(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.20(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic), $7.13(\mathrm{~m}, 1 \mathrm{H}$, aromatic), 7.07 (d, J=2.4 Hz, 1H, $=\mathrm{CH}-\mathrm{NH}-\mathrm{C}$), 6.13 (dd, $\mathrm{J}=17.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), $5.80(\mathrm{~m}$, $1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(\mathrm{O})$), 5.74 (dd, $\mathrm{J}=17.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}$), 5.53 (dd, $\mathrm{J}=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}=\mathrm{CHH}$), 4.16 (t, J=5.3 Hz, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.77 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{COO}$) 3.49 ($\mathrm{q}, \mathrm{J}=5.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 172.31, 166.05, 136.24, 130.38, 126.61, $123.66,121.95,119.48,118.42,111.65,107.50,63.11,38.41,31.31$; FT-IR: $3346 \mathrm{~cm}^{-1}\left(u_{N-H}\right)$, $1721 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C}=\mathrm{O}}\right.$ ester) $), 1660.4 \mathrm{~cm}^{-1}$ ($\mathrm{U}_{\mathrm{C}=\text { Oamide }}$), $1545.5 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C} \text {-Namide }}\right)$; MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}$: 273.12 and $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{Na}$: 295.10, found 273.12 and 295.10 , respectively.

PHEN. Yield: 67%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), 7.4-7.2 (m, 5H, aromatic), 6.23 (dd, $J=17.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 5.99 ($\mathrm{dd}, \mathrm{J}=17.0,10.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}$), $5.70\left(\mathrm{~m}, 1 \mathrm{H},-\mathrm{CH}_{2} \mathrm{NH}-\right.$ $\mathrm{C}(\mathrm{O})$), 5.64 (dd, J=10.3, 1.3 Hz, 1H, CH=CHH), $4.22\left(\mathrm{t}, \mathrm{J}=5.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.65 ($\mathrm{s}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{O}\right) 3.58$ (q, J=5.6 Hz, $2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 171.69, 165.74, 133.84, 130.56, 129.22, 128.7, 127.28, 127.27, 126.62, 63.41, 41.29, 38.67; FT-IR: $1731 \mathrm{~cm}^{-1}$ ($\mathrm{U}_{\mathrm{C}=\text { Oester }}$), $1654.5 \mathrm{~cm}^{-1}$ ($\mathrm{U}_{\mathrm{C}=\text { Oamide }}$), $1560.3 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C}-\mathrm{N}}\right.$ amide $)$; MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{H}]^{+}$ calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3}: 234.11$ and $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NO}_{3} \mathrm{Na}: 256.10$, found 234.11 and 256.10 , respectively.

MTB. Yield: 70\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), 6.28 (dd, J=17.0, $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{CH}_{2}$), 6.09 (dd, J=17.0, 10.3 Hz, 1H, CH=CHH), 5.89 (m, 1H, $-\mathrm{CH}_{2} \mathrm{NH}-\mathrm{C}(\mathrm{O})$), 5.66 (dd, J=10.3, 1.3 Hz, $1 \mathrm{H}, \mathrm{CH}=\mathrm{CHH}$), $4.23\left(\mathrm{t}, \mathrm{J}=5.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.62\left(\mathrm{q}, \mathrm{J}=5.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 2.4(\mathrm{~h}$, $J=7 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{CHCH}_{3}$), $1.15\left(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.90\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 177.08,165.87,130.70,126.75,62.76,41,39.05,26.78,16.62,11.64$; FT-IR: $1732.6 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C}=\text { Oester }}\right), 1655.8 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C}=\text { Oamide }}\right), 1541.8 \mathrm{~cm}^{-1}\left(\mathrm{U}_{\mathrm{C} \text {-Namide }}\right)$; MS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}-$ $\mathrm{H}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{NO}_{3}: 200.13$ and $\mathrm{m} / \mathrm{z}[\mathrm{M}-\mathrm{Na}]^{+}$calculated for $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{Na}$: 222.11, found 200.13 and 222.11, respectively.

5.2) Synthesis of oligomeric chain transfer agents $I N D_{m}$ PHEN $_{m}$ and MTB $_{m}$

Scheme S4. Synthesis of oligomeric chain transfer agents $I \mathrm{ND}_{1}, \mathrm{IND}_{3}, \mathrm{IND}_{10}, \mathrm{PHEN}_{1}$, PHEN $_{3}$, $\mathrm{PHEN}_{10}, \mathrm{MTB}_{1}, \mathrm{MTB}_{3}$ and MTB_{10}.

The synthesis of the oligomeric $\mathrm{IND}_{\mathrm{m}}$, PHEN $_{m}$, and $\mathrm{MTB}_{\mathrm{m}}$ CTAs was carried out by RAFT polymerization, using different [monomer]:[CTA] molar ratios in combination with IND, PHEN and MTB. In a typical reaction, IND, PHEN, or MTB (3.68 mmol) and CTA $(0.78 \mathrm{~g}, 2.94 \mathrm{mmol}$ for $I \mathrm{ND}_{1}, \mathrm{PHEN}_{1}$ and $\mathrm{MTB}_{1} ; 0.24 \mathrm{~g}, 0.92 \mathrm{mmol}$ for $\mathrm{IND}_{3}, \mathrm{PHEN}_{3}$ and $\mathrm{MTB}_{3} ; 0.08 \mathrm{~g}, 0.3 \mathrm{mmol}$ for $\mathrm{IND}_{10}, \mathrm{PHEN}_{10}$ and MTB_{10}) were mixed together in 1 mL of DMF. The solutions were
transferred into a small Schlenk tube equipped with a magnetic stirrer, which was put on ice. Radical initiator AIBN $\left(0.08 \mathrm{~g}, 0.29 \mathrm{mmol}\right.$ for $\mathrm{IND}_{1}, \mathrm{PHEN}_{1}$ and $\mathrm{MTB}_{1} ; 0.026 \mathrm{~g}, 0.09 \mathrm{mmol}$ for $\mathrm{IND}_{3}, \mathrm{PHEN}_{3}$ and $\mathrm{MTB}_{3} ; 0.008 \mathrm{~g}, 0.03 \mathrm{mmol}$ for $\mathrm{IND}_{10}, \mathrm{PHEN}_{10}$ and MTB_{10}), previously dissolved in DMF ($80 \mu \mathrm{~L}$ for $\mathrm{IND}_{1}, 26 \mu \mathrm{~L}$ for PHEN_{1} and $8 \mu \mathrm{~L}$ for MTB_{1}) was added to the tubes. The mixtures were degassed for 30 min bubbling argon under stirring at $0^{\circ} \mathrm{C}$ and finally put in a paraffin oil bath at $80{ }^{\circ} \mathrm{C}$. The reactions were monitored by ${ }^{1} \mathrm{H} N M R$, monitoring the disappearance of acrylamide monomer signals in the $5-6.5 \mathrm{ppm}$ region, until $\sim 80 \%$ conversion was reached. The reaction solutions were then transferred into a 25 mL round bottom flask, and DMF was removed under reduced pressure to give a residue that was purified as follows:
$I N D_{1}, P_{H E N}$ and $M T B_{1}$ were purified by flash chromatography using petroleum ether:EtOAc 2:8 v / v as the eluent.
$I N D_{3}, P_{H E N}$ and $M T B_{3}$ were purified by reversed phase chromatography on an Agilent 971FP automated flash purification system using a BIOTAGE KP-C18-HS 12 g column. Elution was performed using a linear gradient from 20% to 80% MeCN in water over 250 min at a flow rate of $8 \mathrm{~mL} \mathrm{~min}^{-1}$.
$I N D_{10}$, PHEN $_{10}$ and MTB $_{10}$ were re-dissolved in acetone and purified by multiple precipitations in $\mathrm{Et}_{2} \mathrm{O}$. The final precipitates were dried under vacuum and used as macro CTAs without any further purification.

IND 1 . Yield: 32%; ${ }^{1} \mathrm{H}$ NMR (400 MHz , d6-DMSO, δ, ppm), 10.93 ($\mathrm{s}, 1 \mathrm{H}$, indole NH), 8.84 (s, 1H, acrylamide NH), 7.48 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ aromatic), 7.34 ($\mathrm{d}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ aromatic), 7.24 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ aromatic), $7.07(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$ aromatic), $6.98(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ aromatic), $4.85(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73\left(\mathrm{~d}, \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.26\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{d}_{6}\right.$-DMSO, $\left.\delta, \mathrm{ppm}\right): 222.64,176.20,172.03,169.28,136.14,127.17,123.32,127.17$, $122.31,119.78,118.69,111.56,108.11,62.83,49.03,39.16,36.9,30.95,24.34,23.41,20.85$, 18.44, 12.83; HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]-$ calculated for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{3}$: 534.12, found 534.12.

PHEN ${ }_{1}$. Yield: 38%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), 7.23-7.27 (m, 5H, aromatic), 6.60-6.55 ($\mathrm{m}, 1 \mathrm{H}$, acrylamide NH), 4.85 (dd, $\mathrm{J}=8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $4.09\left(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.57 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.42\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.32$ (q, J=7.3Hz, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right): 223.01,176.55,171.58,169.28,133.68,129.33,128.7,127.28,122.26,63.08$, 48.69, 41.18, 39.09, 34.42, 33.55, 32.23, 29.47, 24.48, 23.68, 12.84; HRMS (ESI): $m / z[M]{ }^{-}$ calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{3}$: 495.11, found 495.10.
MTB_{1} Yield: $41 \%{ }^{1}{ }^{\mathrm{H}} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}\right)$, 6.83-6.79 (m, 1H, acrylamide NH), 4.93 (dd, J= 8.0, 4.9Hz, 1H, CH 2 CH), 4.12 (t, J=5.2Hz, 2H, CH2 $\mathrm{CH}_{2} \mathrm{NH}$), $3.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.37 ($\left.q, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}\right) 2.35\left(\mathrm{~h}, \mathrm{~J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 2.15-1.8(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2}$), 1.7-1.4 (m, 2H, CH CH_{3}), $1.33\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.13\left(\mathrm{~m} \mathrm{3H}, \mathrm{CHCH}_{3}\right), 0.88$ (td, J= 7.4, $2.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{d}_{3}-\mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$): 223.25, 177.17, 169.88, 122.65, 62.27, 49.21, 41.3, 39.59, 36.29, 34.86, 30.00, 24.02, 19.66, 16.86, 13.21, 12.02; HRMS (ESI): $m / z[M]$ c calculated for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{3}$: 461.12, found 461.13.
$I N D_{3}$. Yield: 8% as a mixture of IND_{2} and $\mathrm{IND}_{3} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , d6-DMSO, δ, ppm), 7.49 (m $2.52 \mathrm{H}, \mathrm{CH}$), 7.35 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.23(\mathrm{~m}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.07 ($\mathrm{m}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $6.97\left(\mathrm{~m}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}\right.$ aromatic), $4.03\left(\mathrm{~m}, 5.04 \mathrm{H}, \mathrm{CH}_{2}\right), 3.72(\mathrm{~m}$, $5.04 \mathrm{H}, \mathrm{CH}_{2}$); HRMS (ESI): $\mathrm{m} / \mathrm{z}[\mathrm{M}]$ - calculated for $\mathrm{C}_{54} \mathrm{H}_{60} \mathrm{~N}_{7} \mathrm{O}_{11} \mathrm{~S}_{3}: 1078.3518(\mathrm{n}=3)$ and m / z [M]' calculated for $\mathrm{C}_{39} \mathrm{H}_{44} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}_{3}$: 806.2357 ($\mathrm{n}=2$), found 1078.3528 (52% of area) and 806.2365 (48% of area).

PHEN $_{3}$. Yield: 12\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), 7.5-7.2 (m, 15H, aromatic), 7.2-6.5 (m, 3 H , acrylamide NH), 4.9-4.5 (m, 3H, CH), $4.18\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.63\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}\right), 3.55-$ 3.25 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$, and $\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); HRMS (ESI): m / z [M] calculated for $\mathrm{C}_{48} \mathrm{H}_{57} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{3}$: 961.3191, found 961.3205.

MTB $_{3}$. Yield: 10%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta, \mathrm{ppm}$), 7.2-6.8 ($\mathrm{m}, 3 \mathrm{H}$, acrylamide NH), 4.4-4.0 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.55-3.25 ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$, and m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.14 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CHCH}_{3}$), 0.9 ($\mathrm{m}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$); HRMS (ESI): m / z [M] calculated for $\mathrm{C}_{39} \mathrm{H}_{63} \mathrm{~N}_{4} \mathrm{O}_{11} \mathrm{~S}_{3}$: 859.3661, found 859.3679.
$I N D_{10}$. Yield: 58%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-\mathrm{d}_{6}}, \delta, \mathrm{ppm}$), 10.90 ($\mathrm{s}, 10 \mathrm{H}$, indole NH), 7.46 (m , $10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.34(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.21 (m, 10H, CH, CH aromatic), 7.05 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 6.95 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.7(\mathrm{~m}, 20 \mathrm{H}$, CH_{2}), 2.38-1.88 ($\mathrm{m}, 10 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}$), 1.8-1 ($\mathrm{m}, 2 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}$); $M_{\mathrm{n}, \text {,тео: }} 3.00 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\text { (TH) }): ~}^{1.56 \mathrm{kDa} \text {, }}$ $\quad=1$.12.

PHEN $_{10}$. Yield: 64%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$), 8.4-7.4 (m, 10H, acrylamide NH), 7.35-7.15 (m,50H, aromatic), 7.2-6.5 (m, 10H, acrylamide NH), $4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 3.83 ($\mathrm{m}, 2 \mathrm{OH}, \mathrm{CH}_{2} \mathrm{CO}$), 2.4-1.85 (m, 10H CH 2 CH), 1.8-1 ($\mathrm{m}, 2 \mathrm{H} \mathrm{CH}_{2} \mathrm{CH}$). $M_{\mathrm{n}, \text { THEO: }} 2.6 \mathrm{kDa} ; M_{\mathrm{n}, \text { SEC(THF) }}$: 1.6 kDa, $\triangle=1.09$.

MTB $_{10}$. Yield: $57 \%{ }^{1}{ }^{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta, \mathrm{ppm}\right)$, 8.4-7.1 (m, 10H, acrylamide NH), 4.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $2.33\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCH}_{3}\right), 1.06\left(\mathrm{~m}, 30 \mathrm{H}, \mathrm{CHCH}_{3}\right), 0.83\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; $M_{\mathrm{n}, \text { ТНео: }} 2.3 \mathrm{kDa} . M_{\mathrm{n}, \mathrm{SEC(THF)}}: 1.47 \mathrm{kDa}, ~ Ð=1.10$.

Figure S12. Normalised SEC traces of IND_{10}, PHEN $_{10}$ and MTB_{10}. SEC analyses were performed using THF as the mobile phase (PMMA standards).

5.3) Synthesis of IND $_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$, and MTB $_{m}-$ HEA $_{n}$

 $\mathrm{PHEN}_{1}-b-\mathrm{HEA}_{37} \mathrm{PHEN}_{1}-b-\mathrm{HEA}_{100}$ $\begin{array}{ll}\text { PHEN }_{3}-b-\mathrm{HEA}_{45} & \text { PHEN }_{3}-b-\mathrm{HEA}_{99} \\ \mathrm{PHEN}_{10}-b-\mathrm{HEA}_{38} & \text { PHEN }_{10}-b-\mathrm{HEA}_{88}\end{array}$

$$
\begin{array}{ll}
\text { MTB }_{1}-b-\mathrm{HEA}_{37} & \mathrm{MTB}_{1}-b-\mathrm{HEA}_{111} \\
\text { MTB }_{3}-b-\mathrm{HEA}_{42} & \text { MTB }_{3}-b-\mathrm{HEA}_{82} \\
\text { MTB }_{10}-b-\mathrm{HEA}_{43} & \text { MTB }_{10}-b-\mathrm{HEA}_{105}
\end{array}
$$

Scheme S5. Synthesis of $\mathrm{IND}_{1^{-}}, \mathrm{IND}_{3^{-}}, \mathrm{IND}_{10^{-}}, \mathrm{PHEN}_{1^{-}}, \mathrm{PHEN}_{3^{-}}, \mathrm{PHEN}_{10^{-}}, \mathrm{MTB}_{1^{-}}, \mathrm{MTB}_{3^{-}}$and $\mathrm{MTB}_{10}-b-\mathrm{HEA}_{\mathrm{n}}$ block copolymers.
$\mathrm{IND}_{\mathrm{m}}$, PHEN $_{m}$, and $\mathrm{MTB}_{\mathrm{m}}$ were utilised as macro-chain transfer agents to mediate the RAFT polymerisation of N-hydroxy-ethylacrylamide (Scheme S5). Two different chain lengths, with DP 40 and 100, were targeted, to investigate the influence of the size of the polyHEA block on protein-copolymer interaction. The combination of nine oligomeric RAFT agents and two different $p(H E A)$ chains length resulted in the synthesis of a library of eighteen amphiphilic $\mathrm{IND}_{m}-b-\mathrm{HEA}_{n}$, PHEN $_{m}-b-\mathrm{HEA}_{n}$, and $\mathrm{MTB}_{m}-b-\mathrm{HEA}_{n}$ block copolymers.

In a typical reaction, the chosen CTA (0.10 mmol for $\mathrm{IND}_{1}, \mathrm{PHEN}_{1}, \mathrm{MTB}_{1} ; 0.050 \mathrm{mmol}$ for IND_{3}, PHEN $_{3}$, MTB $_{3} ; 0.050 \mathrm{mmol}$ for $\mathrm{IND}_{10}, \mathrm{PHEN}_{10}, \mathrm{MTB}_{10}$) was dissolved in DMF along with HEA (50 eq. for the target $D P=40,100$ eq. for the target $D P=100$). The initial monomer concentration in the reaction solution was 3.0 M . The mixtures were transferred into small schlenk tubes equipped with a magnetic stirrer, which were cooled to $0^{\circ} \mathrm{C}$. Initiator V501 (0.1 eq .),
previously dissolved in DMF, was added to each tube. The mixtures were degassed for 30 min bubbling argon under stirring at $0^{\circ} \mathrm{C}$, and finally placed in a paraffin oil bath at $70^{\circ} \mathrm{C}$. The reactions were monitored by ${ }^{1} \mathrm{H}$ NMR, monitoring the disappearance of acrylamide monomer signals in the $5-6.5 \mathrm{ppm}$ region until $\sim 80 \%$ conversion was reached. The polymers were then precipitated in a $8: 2 \mathrm{v} / \mathrm{v} \mathrm{THF:Et}{ }_{2} \mathrm{O}$. The residue was re-dissolved in MeOH and precipitated again in THF. This precipitation procedure was repeated three times, then the polymers were dried under reduced pressure.
$I D_{1}$-b-HEA ${ }_{37}$. Yield: 75%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$), $7.80-7.40(\mathrm{~m}, 37 \mathrm{H}$, polyacrylamide NH), 7.34 (d, 1H, CH, CH aromatic), $7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 (t, 1H, CH, CH aromatic), $6.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $5.50-4.30(\mathrm{~m}, 37 \mathrm{H}$, polyacrylamide OH$), 4.04$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 37 \mathrm{H}\right.$, polyacrylamide $\left.\mathrm{CHCH}_{2}\right)$ 1.60-1.20 ($\mathrm{m}, 74 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}: 5.0 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF}):} 8.7 \mathrm{kDa} ; ~ Ð=1.07$.

PHEN $_{1}-b-$ HEA $_{37}$. Yield: 78%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 37 \mathrm{H}$, polyacrylamide NH), 7.35-7.22 (m, 5 H , aromatic), $5.50-4.30(\mathrm{~m}, 37 \mathrm{H}$, polyacrylamide OH), 4.04 $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.10-1.70 ($\mathrm{m}, 37 \mathrm{H}$, polyacrylamide CHCH_{2}) 1.60-1.20 ($\mathrm{m}, 74 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}: 4.8 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}: 9.0 \mathrm{kDa}, ~ Ð=1.07$.

MTB $_{1}$-b-HEA ${ }_{37}$. Yield: $82 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 37 \mathrm{H}$, polyacrylamide NH), 5.50-4.30 (m, 38H, polyacrylamide OH), $4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}$, 38H, polyacrylamide CHCH_{2}) 1.60-1.20 ($\mathrm{m}, 76 \mathrm{H}$, polyacrylamide CHCH_{2}), $1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84$ ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$) ; $M_{\mathrm{n}, \mathrm{NMR}}: 4.8 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}$: $10.4 \mathrm{kDa}, ~ \mathrm{D}=1.05$.
$I D_{3}-b-H_{E A}$. Yield: 46%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$), $7.80-7.40(\mathrm{~m}, 53 \mathrm{H}$, polyacrylamide NH), 7.34 (d, $2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.24(\mathrm{~m}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 (t, $2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $6.99(\mathrm{t}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $5.50-4.30(\mathrm{~m}, 53 \mathrm{H}$, polyacrylamide OH), $4.03\left(\mathrm{~m}, 5.04 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~m}, 5.04 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}, 53 \mathrm{H}$, polyacrylamide CHCH_{2}) 1.60-1.20 (m, 106H, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}: 7.2 \mathrm{kDa}$; $M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}: 11.7 \mathrm{kDa} ; \mathrm{D}=1.09$.

PHEN $_{3}-b-H_{E A}$. Yield: $70 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): 7.80-7.40 (m, 45H, polyacrylamide NH), $7.35-7.22(\mathrm{~m}, 15 \mathrm{H}$, aromatic), $5.50-4.30(\mathrm{~m}, 45 \mathrm{H}$, polyacrylamide OH$)$, $4.05\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 45 \mathrm{H}\right.$, polyacrylamide $\left.\mathrm{CHCH}_{2}\right) 1.60-1.20(\mathrm{~m}, 90 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}: 6.2 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC(DMF)}}$: $9.6 \mathrm{kDa}, ~ \triangle=1.07$.

MTB $_{3}-b-\mathrm{HEA}_{42}$. Yield: $80 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 42 \mathrm{H}$, polyacrylamide NH), 5.50-4.30 (m, 42H, polyacrylamide OH), $4.02\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}$, 42 H , polyacrylamide CHCH_{2}) 1.60-1.20 ($\mathrm{m}, 84 \mathrm{H}$, polyacrylamide CHCH_{2}), $1.07\left(\mathrm{~d}, 9 \mathrm{H}, \mathrm{CH}_{3}\right), 0.84$ ($\mathrm{t}, 9 \mathrm{H}, \mathrm{CH}_{3}$); $M_{\mathrm{n}, \mathrm{NMR}}: 5.8 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}$: $10.9 \mathrm{kDa} ; ~ Ð=1.05$.
 polyacrylamide NH), 7.34 (d, 10H, CH, CH aromatic), 7.24 ($\mathrm{m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 (t, $10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $6.99(\mathrm{t}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $5.50-4.30(\mathrm{~m}, 40 \mathrm{H}$, polyacrylamide OH$)$, $4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 4 \mathrm{H}\right.$, polyacrylamide CHCH_{2}) 1.60-1.20 ($\mathrm{m}, 80 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}$: $7.7 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})}$: $8.9 \mathrm{kDa} ; ~ Ð=1.07$.

PHEN $_{10}-b-$ HEA $_{38}$. Yield: 70%; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-d $_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 38 \mathrm{H}$, polyacrylamide NH), $7.35-7.22(\mathrm{~m}, 50 \mathrm{H}$, aromatic), $5.50-4.30(\mathrm{~m}, 38 \mathrm{H}$, polyacrylamide OH$)$, 4.03 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.10-1.70 ($\mathrm{m}, 38 \mathrm{H}$, polyacrylamide CHCH_{2}) 1.60-1.20 (m, 76H, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}$: 7 kDa ; $M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})} 10.7 \mathrm{kDa} ; ~ Ð=1.08$.

MTB $_{10}-b-\mathrm{HEA}_{43}$. Yield: $68 \%{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): 7.80-7.40 (m, 43H, polyacrylamide NH), $5.50-4.30(\mathrm{~m}, 43 \mathrm{H}$, polyacrylamide OH$)$, $4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}$, 43 H , polyacrylamide CHCH_{2}) $1.60-1.20\left(\mathrm{~m}, 86 \mathrm{H}\right.$, polyacrylamide CHCH_{2}), $1.07\left(\mathrm{~d}, 30 \mathrm{H}, \mathrm{CH}_{3}\right)$, $0.84\left(\mathrm{t}, 30 \mathrm{H}, \mathrm{CH}_{3}\right)$; $M_{\mathrm{n}, \mathrm{NMR}}: 7.7 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF})} 10 \mathrm{kDa} ; ~ Ð=1.07$.
$I D_{1}$-b-HEA A_{100}. Yield: 67\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{-d_{6}}, \delta, \mathrm{ppm}$), 7.80-7.40 (m, 100H, polyacrylamide NH), 7.34 (d, $1 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.24(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 (t, 1 H , CH, CH aromatic), $6.99(\mathrm{t}, 1 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 5.50-4.30 ($\mathrm{m}, 100 \mathrm{H}$, polyacrylamide OH), 4.04 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), $3.78\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 100 \mathrm{H}\right.$, polyacrylamide CHCH_{2}) 1.60-1.20 (m, 200H, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}: 8.7 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF}):} 13.8 \mathrm{kDa} ; ~ Ð=1.07$.

PHEN $_{1}-b-H E A_{100}$. Yield: $81 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): 7.80-7.40 (m, 100H, polyacrylamide NH), $7.35-7.22(\mathrm{~m}, 5 \mathrm{H}$, aromatic), $5.50-4.30(\mathrm{~m}, 100 \mathrm{H}$, polyacrylamide OH$)$, $4.04\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 100 \mathrm{H}\right.$, polyacrylamide $\left.\mathrm{CHCH}_{2}\right) 1.60-1.20(\mathrm{~m}, 200 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \text { NMR: }} 12.2 \mathrm{kDa} ; M_{\mathrm{n}, \mathrm{SEC(DMF)}}: 18.6 \mathrm{kDa} ; ~ Ð=1.08$.

MTB $_{1}$-b-HEA 111 . Yield: 72%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{6}$, δ, ppm): 7.80-7.40 (m, 111H, polyacrylamide NH), 5.50-4.30 ($\mathrm{m}, 111 \mathrm{H}$, polyacrylamide OH), $4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}$, 111H, polyacrylamide CHCH_{2}) 1.60-1.20 (m, 222H, polyacrylamide CHCH_{2}), $1.07\left(\mathrm{~d}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, 0.84 ($\mathrm{t}, 3 \mathrm{H}, \mathrm{CH}_{3}$); $M_{\mathrm{n}, \text { NMR: }} 13.2 \mathrm{kDa} ; M_{\mathrm{n}, \text { SEC(DMF) }}: 19.8 \mathrm{kDa}, ~ D=1.09$.

IND ${ }_{3}$-b-HEAgs. Yield: 57\%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$), 7.80-7.40 (m, 98H, polyacrylamide NH), $7.34(\mathrm{~d}, 2.6 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.24(\mathrm{~m}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 $(\mathrm{t}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $6.99(\mathrm{t}, 2.52 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $5.50-4.30(\mathrm{~m}, 98 \mathrm{H}$, polyacrylamide OH), $4.05\left(\mathrm{~m}, 5.04 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~m}, 5.04 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}, 98 \mathrm{H}$, polyacrylamide CHCH_{2}) $1.60-1.20$ ($\mathrm{m}, 196 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}:} 12.0 \mathrm{kDa}$; $M_{\text {n, SEC(DMF) }}: 17.0 \mathrm{kDa}, \mathrm{D}=1.11$.

PHEN $_{3}$-b-HEAg. Yield: 66%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{g}} \mathrm{d}_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 99 \mathrm{H}$, polyacrylamide NH), 7.35-7.22 (m, 15H, aromatic), 5.50-4.30 ($\mathrm{m}, 99 \mathrm{H}$, polyacrylamide OH), $4.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70\left(\mathrm{~m}, 99 \mathrm{H}\right.$, polyacrylamide $\left.\mathrm{CHCH}_{2}\right) 1.60-1.20(\mathrm{~m}, 198 \mathrm{H}$, polyacrylamide CHCH_{2}); $M_{\text {n, NMR }}: 12.5 \mathrm{kDa}$; $M_{\mathrm{n}, \text { SEC(DMF) }}$: $17.25 \mathrm{kDa} ; ~ Đ=1.06$.

MTB $_{3}-$ b-HEA ${ }_{82}$. Yield: $80 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 82 \mathrm{H}$, polyacrylamide NH), $5.50-4.30\left(\mathrm{~m}, 82 \mathrm{H}\right.$, polyacrylamide OH), $4.01\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70(\mathrm{~m}$, 82 H , polyacrylamide CHCH_{2}) 1.60-1.20 (m, 164H, polyacrylamide CHCH_{2}), $1.07\left(\mathrm{~d}, 9 \mathrm{H}, \mathrm{CH}_{3}\right)$,

IND ${ }_{10}$-b-HEA ${ }_{95}$. Yield: 57%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{\left.-\mathrm{d}_{6}, ~ \delta, ~ p p m\right), ~ 7.80-7.40 ~(m, ~ 95 H, ~}$ polyacrylamide NH), 7.34 ($\mathrm{d}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $7.24(\mathrm{~m}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 7.08 (t, $10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), 6.99 ($\mathrm{t}, 10 \mathrm{H}, \mathrm{CH}, \mathrm{CH}$ aromatic), $5.50-4.30(\mathrm{~m}, 95 \mathrm{H}$, polyacrylamide OH), $4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.10-1.70 (m, 95H, polyacrylamide CHCH_{2}) 1.60-1.20

PHEN $_{10}-b-H E A_{88}$. Yield: 60%; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}, \delta, \mathrm{ppm}$): $7.80-7.40(\mathrm{~m}, 88 \mathrm{H}$, polyacrylamide NH), 7.35-7.22 (m, 50H, aromatic), 5.50-4.30 ($\mathrm{m}, 88 \mathrm{H}$, polyacrylamide OH), 4.02 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.10-1.70 ($\mathrm{m}, 88 \mathrm{H}$, polyacrylamide CHCH_{2}) 1.60-1.20 (m, 176H, polyacrylamide CHCH_{2}); $M_{\mathrm{n}, \mathrm{NMR}}$: $12.9 \mathrm{kDa;} M_{\mathrm{n}, \mathrm{SEC}(\mathrm{DMF}):} 17.4 \mathrm{kDa} ; ~ Ð=1.07$.

MTB $_{10}-b-$ HEA $_{105 .}$. Yield: $80 \% ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}^{2} \mathrm{~d}_{6}, \delta, \mathrm{ppm}$): 7.80-7.40 (m, 105H, polyacrylamide NH), $5.50-4.30(\mathrm{~m}, 105 \mathrm{H}$, polyacrylamide OH$), 4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.10-1.70$ ($\mathrm{m}, 105 \mathrm{H}$, polyacrylamide CHCH_{2}) $1.60-1.20\left(\mathrm{~m}, 210 \mathrm{H}\right.$, polyacrylamide $\left.\mathrm{CHCH}_{2}\right), 1.07(\mathrm{~d}, 30 \mathrm{H}$, CH_{3}), $0.84\left(\mathrm{t}, 30 \mathrm{H}, \mathrm{CH}_{3}\right.$); $M_{\mathrm{n}, \mathrm{NMR}:} 12.5 \mathrm{kDa} ; M_{\mathrm{n}, \text { SEC(DMF): }} 18.7 \mathrm{kDa} ; ~ Ð=1.07$.

5.3.1) SEC traces of IND $_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$, and MTB $_{m}-$ HEA $_{n}$

Figure S13. Normalised SEC traces of (top row) HEA 40 and (bottom row) $\mathrm{HEA}_{100} \mathrm{PHEN}_{\mathrm{m}}{ }^{-}$, $\mathrm{MTB}_{\mathrm{m}}{ }^{-}$, and IND_{m} - block co-polymers. SEC analyses were performed using DMF $+0.1 \% \mathrm{LiBr}$ as the mobile phase (PMMA standards).
5.3.2) ${ }^{1} \mathrm{H}$ NMR spectra of $\mathrm{IND}_{m}-$ HEA $_{n}$ PHEN $_{m}-$ HEA $_{n}$, and MTB $_{m}-$ HEA $_{n}$

Figure S14. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{IND}_{1}-b-\mathrm{HEA}_{37}$.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{IND}_{3}-b-\mathrm{HEA}_{53}$.

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-d_{6}}$) of copolymer $\mathrm{IND}_{10}-\mathrm{b}-\mathrm{HEA}_{40}$.

Figure S17. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) of copolymer $\mathrm{PHEN}_{1}-b-\mathrm{HEA}_{37}$.

Figure S18. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) of copolymer $\mathrm{PHEN}_{3}-b-\mathrm{HEA}_{45}$.

Figure S19. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{PHEN}_{10}-b-\mathrm{HEA}_{38}$.

Figure S20. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{MTB}_{1}-b-\mathrm{HEA}_{37}$.

Figure S21. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) of copolymer $\mathrm{MTB}_{3}-b-\mathrm{HEA}_{42}$.

Figure S22. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) of copolymer $\mathrm{MTB}_{10}-b-\mathrm{HEA}_{43}$.

Figure S23. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{IND}_{1}-b-\mathrm{HEA}_{100}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{IND}_{3}-b-\mathrm{HEA}_{98}$.

Figure S25. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$.

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{PHEN}_{1}-b-\mathrm{HEA}_{109}$.

Figure S27. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-} \mathrm{d}_{6}$) of copolymer PHEN $_{3}-b-\mathrm{HEA}_{99}$.

Figure S28. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right)$ of copolymer PHEN $_{10}-b-\mathrm{HEA}_{88}$.

9

Figure S29. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{MTB}_{1}-b-\mathrm{HEA}_{111}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{MTB}_{3}-b-\mathrm{HEA}_{82}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) of copolymer $\mathrm{MTB}_{10}-b-\mathrm{HEA}_{105}$.

6) Methods

Analysis of polymers self-assembly by dynamic light scattering

The polymers were dissolved in Milli-Q water at a concentration of $1.0 \mathrm{mg} / \mathrm{mL}$. The solutions were left mixing for 2 h , and then analysed using a Malvern Zetasizer Nano. 3 repetitions were made for each sample.

Surface tension measurements of $\mathrm{IND}_{3}-b-\mathrm{HEA}_{98}$ and $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$ solutions

$\mathrm{IND}_{3}-b-\mathrm{HEA}_{98}$ and $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$ were dissolved in Milli-Q water at concentrations ranging from 0.05 to $15 \mathrm{mg} / \mathrm{mL}$. The surface tension of each copolymer dilution was measured on a Kruss DSA 100 using the "pendant drop" method. Two droplets were analysed per sample, taking multiple measurement from each droplet.

Lysozyme aggregation assay

A lysozyme stock solution was prepared by dissolving the protein in water at a concentration of $100 \mathrm{mg} / \mathrm{mL}$. $200 \mu \mathrm{~L}$ of this solution were added to $1800 \mu \mathrm{~L}$ of 100 mM phosphate buffer pH 12.3 in which the polymers had been previously dissolved, for a final lysozyme concentration of $10 \mathrm{mg} / \mathrm{mL}$ and a polymer: protein molar ratio of 1:1. From each polymerprotein mixture, 5 aliquots of $300 \mu \mathrm{~L}$ were transferred into a 96 -well plate. The plate was loaded into a TECAN Spark 10M Multi-function Platereader. Absorbance at $\lambda=500 \mathrm{~nm}$ was measured every 30 min for 24 h at $30^{\circ} \mathrm{C}$ to monitor the increase of turbidity resulting from protein aggregation.

Insulin aggregation experiment.

An insulin stock solution was prepared by dissolving the protein in 10 mM phosphate buffer pH 2 at a concentration of $4 \mathrm{mg} / \mathrm{mL}$. Polymers stock solutions were prepared by dissolving various amounts of polymers in the same buffer as polyacrylate pendant units are known to be significantly more stable under mild acidic conditions than they are under basic $\mathrm{pH} .{ }^{1}$ Different amounts of insulin and polymers stock solutions were mixed to have a final protein concentration of $2 \mathrm{mg} / \mathrm{mL}$ and polymer:protein molar ratio of 5:1 and 10:1 in a final volume of $485 \mu \mathrm{~L}$. After mixing, polymer/protein solutions were let under gentle stirring for 2 h . The pH was then raised to 5.3 by adding $15 \mu \mathrm{~L}$ of NaOH 0.5 M solution to each of the polymers:protein mixtures, which were left overnight at ambient temperature. The mixture was then centrifuged, the supernatant discarded, and the precipitate re-dissolved in 10 mM pH 2 phosphate buffer to be analysed by RP-HPLC, using a Zorbax Eclipse Plus C18 column (3.5 $\mu \mathrm{m}, 95 \AA$, $4.6 \times 12.5 \mathrm{~mm}$), with a linear gradient of $20-90 \%$ acetonitrile in Milli-q water with 0.1\% TFA.

Insulin aggregation study: Circular Dichroism analysis

Circular Dichroism (CD) spectra were recorded on an Applied Photo-physics Chirascan circular dichroism spectropolarimeter using a 1 mm path length quartz cuvette. CD measurements were performed at $25^{\circ} \mathrm{C}$ over a $180-280 \mathrm{~nm}$ wavelength range, using a response time of 1 s , 1 nm pitch and 0.5 nm bandwidth. The recorded spectra represent a smoothed of the original
scan. An insulin stock solution was prepared by dissolving the protein in 10 mM pH 2 phosphate buffer at a concentration of $4 \mathrm{mg} / \mathrm{mL}$. $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$ stock solution was prepared by dissolving the polymer in the same buffer at $98.4 \mathrm{mg} / \mathrm{mL}$. Different amounts of insulin and polymers stock solutions were mixed to have a final protein concentration of $2 \mathrm{mg} / \mathrm{mL}$ and polymer:protein molar ratio of 5:1 and 10:1 in a final volume of $990 \mu \mathrm{~L}$. After mixing, polymer/protein solutions were let under gentle stirring for 2 h . The pH was then raised to 5.3 by adding $10 \mu \mathrm{~L}$ of NaOH 1 M solution to each of the polymers/protein mixtures. The mixtures were then purified by semi-preparative HPLC, using a Phenomenex Jupiter C18 column ($10 \mu \mathrm{~m}, 300 \AA, 10 \times 250 \mathrm{~mm}$), with a linear gradient of $30-60 \%$ acetonitrile. Purified protein samples were lyophilised and re-dissolved in 10 mM pH 2 phosphate buffer at a concentration of $0.2 \mathrm{mg} / \mathrm{mL} . \mathrm{pH}$ was raised again to 7.4 before the analysis.

IDR1018 peptide aggregation study

A 1.0 mM peptide stock solution was prepared in water. 0.11 mM polymers stock solutions were prepared by dissolving the polymers in 100 mM phosphate buffer, $\mathrm{pH} 7.2 .50 \mu \mathrm{~L}$ of peptide were diluted in $450 \mu \mathrm{~L}$ of each polymer solution, for a final volume of $500 \mu \mathrm{~L}$ and a concentration of 0.10 mM for both peptide and the polymers. The solutions were let under stirring for 5 h and finally centrifuged. The supernatant was analysed by RP-HPLC to detect the amount of peptide left in solution, using a Zorbax Eclipse Plus C18 column ($3.5 \mu \mathrm{~m}, 95 \AA$, $4.6 \times 12.5 \mathrm{~mm}$), with a linear gradient of $25-90 \%$ acetonitrile in Milli-q water with 0.1% TFA. Absorbance was recorded at $\lambda=280 \mathrm{~nm}$.

7) Other supporting data

Figure S31. Effect of $\mathrm{IND}_{10}-b$ - HEA_{95} on insulin secondary structure: circular dichroism (CD) analysis. Profiles are showing native insulin, insulin purified by RP-HPLC, and $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$: insulin mixtures at 5:1 and 10:1 molar ratio purified by RP-HPLC. RP-HPLC.

Figure S32. Aggregation assay of lysozyme and a mixture between 40 HEA-DP copolymers and lysozyme at 1:1 copolymers:lysozyme molar ratio. [Lysozyme]= $10 \mathrm{mg} / \mathrm{mL}$ in 100 mM pH 12.3 phosphate buffer. Lysozyme aggregation was assessed by turbidimetry, recording Abs $\lambda=500 \mathrm{~nm}$ every 30 min for 24.

Figure S33. Aggregation assay of Lysozyme and a mixture between 100 HEA-DP copolymers and lysozyme at 1:1 copolymers:lysozyme molar ratio. [Lysozyme]= $10 \mathrm{mg} / \mathrm{mL}$ in 100 mM pH 12.3 phosphate buffer. Lysozyme aggregation was assessed by turbidimetry, recording Abs at 500 nm every 30 min for 24.

Spectrum S34. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}_{-d_{6}}$) of $\mathrm{IND}_{10}-b-\mathrm{HEA}_{95}$ (a) before and (b) after 24 h treatment in 100 mM pH 12 phosphate buffer and subsequent precipitation in THF.

References

1 S. Fujisawa and Y. Kadoma, Int J Mol Sci, 2012, 13, 5789-5800.

