Supplementary Material

Construction of a layer-by-layer self-assembly rosemary acid delivery system on the surface of CFRPEEK implants for enhanced anti-inflammatory and osseointegration activities

Shanshan Zhao¹, Xingyu Zhou¹, Junbo Dang¹, Yilong Wang¹, Junhui Jiang¹,

Tianhao Zhao², Dahui Sun², Chen Chen³, Xin Dai³, Yan Liu³, Mei Zhang^{1*}

1. Key Laboratory of High Performance Plastics, Ministry of Education, College of Chemistry, Jilin University, Changchun 130012, P. R. China;

2. Norman Bethune First Hospital, Jilin University, Changchun 130021, P. R. China
3. Jilin Province Guoda Bioengineering Co., Ltd, Changchun 130000, P. R. China
*Corresponding author: zhangmei@jlu.edu.cn

Experimental methods of zeta potential and CCK-8 in the exploration of the optimal number of LBL layers for the surface modification

The zeta potential of SCPP/CC_n (n = 1, 3, 5, 10, 15, or 20) was evaluated in a 0.001 M potassium chloride mobile electrolyte solution using the $35 \times 15 \times 1.5$ mm³ samples placed in an adjustable gap cell. HCl solution (0.1 M) and NaOH solution (0.1 M) were used to adjust the pH of the electrolyte to 5.0.

Cell Counting Kit-8 (CCK-8, Beyotime, China) was utilized for the cell proliferation assay. Cells were seeded on the surface of SCPP/CC_n (n = 1, 3, 5, 10, 15, or 20) with 1×10^4 cells/well in 48-well plates. At the preset times (1, 4, and 7 days), cell medium was removed and 10% CCK-8 reagent contained in cell medium was added. After culturing at 37°C for 2 h, the OD value was determined at 450 nm.

$$\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{n} \xrightarrow{\text{NaBH}_{4}} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}_{n}$$

Fig.S1. The reduction reaction formula of SCP.

Fig.S2. Zeta potential of SCPP/CC_n (n = 1, 3, 5, 10, 15, or 20).

Fig.S3. The proliferation of BMSCs after 1, 4, and 7 days of incubation on SCPP/CC $_n$

(n = 1, 3, 5, 10, 15, or 20). **p* < 0.05.

Fig.S4. Fitting diagram of the thickness and number of LBL layers.

Fig.S5. O1s high-resolution XPS spectra of SCP.

Fig.S6. NO release level of RAW 264.7 cells on various specimens.

Fig.S7. Live/Dead fluorescent staining images (scale bar = $200 \ \mu m$) of BMSCs (green represents living cells). (a) SCP, (b) SCPP, (c) SCPP/CC₅, and (d) SCPP/CC₅@RA.

Fig.S8. Representative immunofluorescence staining images (scale bar = $20 \ \mu m$) of

ALP after culturing for 7 days on different sample surfaces (cyan: ALP; red:

SCPP/CC5 SCPP/CC5@RA SCP SCPP Merge 20µm 20µm 20µn 20µr Cytoskeleton 20µm 20µm 20µm 20µm Nucleus 20µm 20µn 20µm 20µm BMP-2 20µn 20µm 20µm 20µm

cytoskeleton; blue: nucleus).

Fig.S9. Representative immunofluorescence staining images (scale bar = $20 \ \mu m$) of BMP-2 after culturing for 7 days on different sample surfaces (green: BMP-2; red:

cytoskeleton; blue: nucleus).

Fig.S10. Representative immunofluorescence staining images (scale bar = $20 \ \mu m$) of Runx2 after culturing for 7 days on different sample surfaces (yellow: Runx2; red: cytoskeleton; blue: nucleus).

Fig.S11. Immunofluorescence staining images (scale bar = $200 \ \mu m$) of tissues around implants after 3 days (A) and 7 days (B) of implantation. (Red represents iNOS; green represents CD163; blue represents DAPI).

Fig.S12. Development of the rabbit tibial defect model (scale bar = 5 mm).

Fig.S13. The load-displacement curves of different implants after 4 weeks of

implantation.

Substrate	C%	0%	N%	S%
SCP	70.40	28.89		0.72
SCP-OH	70.21	29.58		0.21
SCPP	66.20	31.17	2.63	
SCPP/CC5	46.02	50.59	3.39	
SCPP/CC5@RA	41.21	55.05	3.74	

Table S1. The elemental composition of different sample surfaces determined by XPS.

Table S2. Primer pairs used to measure inflammation-related genes in RT-PCR.

Genes	Sequence (5'-3')
iNOS	F: CCTTTGCTCATGACATCGACCA
	R: TCCTGCCCACTGAGTTCGT
IL-6	F: GACTTCCATCCAGTTGCCTT
	R: ATGTGTAATTAAGCCTCCGACT
IL-10	F: GAAGACAATAACTGCACCCACT
	R: AGTCGGTTAGCAGTATGTTGT
CD206	F: GTCATACCGTGTTGAACCTCT
	R: ACACAATCATTCCGTTCACCAG
GAPDH	F: GAACATCATCCCTGCATCCACT
	R: GATCCACGACGGACACATTGG

Table S3. Primer pairs used to measure osteogenesis-related genes in RT-PCR.

Genes	Sequence (5'-3')	
ALP	F: ATCGGAACAACCTGACTGACC	
	R: CTGCCTCCTTCCACTAGCAA	
BMP-2	F: ATTAGCAGGTCTTTGCACCA	
	R: ACGCTTTTCTCGTTTGTGGA	
Col-1	F: ATGCCATCAAGGTCTACTGCAA	
	R: GAACCTTCGCTTCCATACTCG	
Runx2	F: GGCAGCACGCTATTAAATCCAA	
	R: GACTCATCCATTCTGCCGCTA	
GAPDH	F: TATGACTCTACCCACGGCAAG	
	R: ATACTCAGCACCAGCATCACC	