Synergy Between 3D-Extruded Electroconductive Scaffolds and Electrical Stimulation to Improve Bone Tissue Engineering Strategies

(Supplementary Information)

6

5

4

7 João C. Silva,^{a,b,c,*,#} Pedro Marcelino,^{a,b,c,d} João Meneses,^d Frederico
8 Barbosa,^{a,b,c} Carla S. Moura,^e Ana C. Marques,^{f,g} Joaquim M. S. Cabral,^{a,b,c} Paula
9 Pascoal-Faria,^{d,h,j} Nuno Alves,^{d,i,j} Jorge Morgado,^{c,k} Frederico C. Ferreira,^{a,b,c,*}
10 Fábio F. F. Garrudo,^{a,b,c,k,*,#}

11

- ¹² ^a iBB Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de
 ¹³ Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- ¹⁴ ^b Associate Laboratory i4HB Institute for Health and Bioeconomy, Avenida. Rovisco Pais, 1049-15 001 Lisboa, Portugal
- ¹⁶ ^c Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Avenida
 17 Rovisco Pais, 1049-001 Lisboa, Portugal
- ¹⁸ ^dCDRSP Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria,
 ¹⁹ Rua de Portugal-Zona Industrial, 2430-028 Marinha Grande, Portugal
- 20 ^e Polytechnic Institute of Coimbra, Applied Research Institute, Rua da Misericórdia, Lagar dos
- 21 Cortiços S. Martinho do Bispo, 3045-093 Coimbra, Portugal.
- 22 ^f CERENA, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 23 Lisboa, 1049-001 Portugal.
- ^g Department of Chemical Engineering, Instituto Superior Técnico, Universidade de Lisboa,
 Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
- ^h Department of Mathematics, School of Technology and Management, Polytechnic of Leiria,
 Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
- 28 ⁱ Department of Mechanical Engineering, School of Technology and Management, Polytechnic of
- 29 Leiria, Morro do Lena—Alto do Vieiro, Apartado 4163, 2411-901 Leiria, Portugal
- 30 ^j Associate Laboratory Arise, Porto, Portugal.
- 31 ^k Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Avenida
- 32 Rovisco Pais, 1049-001 Lisboa, Portugal
- 33 # These authors contributed equally to the work

34

- 35 * Corresponding Authors
- 36 E-mail address: joao.f.da.silva@ tecnico.ulisboa.pt
- 37 E-mail address: frederico.ferreira@tecnico.ulisboa.pt
- 38 E-mail address: fabio.garrudo@tecnico.ulisboa.pt

40 Prepared for *Journal of Materials Chemistry B*, November 2023; **Revised January** 41 **2024**

42 Table of contents

Supplementary	Summary	Page
display item		
Figure S1	FTIR profile of the materials used in the design of PCL-	2
	PEDOT scaffolds.	
Figure S2	Stability assay results for the different PEDOT-based	3
	coatings tested on 3D-printed PCL films.	
Figure S3	Study of the properties of PEDOT:PSS spin-coated	4
	films on glass.	
Figure S4	Effect of different chemical/thermal conditions on the	5
	mechanical properties of PCL and PCL(NaOH)	
	scaffolds.	
Figure S5	SEM images of the different scaffolds after 7 days of	6
	mineralization.	
Figure S6	FEA analysis of electrical field intensity on the filaments	7
	using different configurations.	
Figure S7	FEA analysis of electrical field intensity on the different	8
	PCL-PEDOT samples tested.	
Figure S8	Visual aspect of the electrical stimulation setups used	9-11
	in this work.	
Table S1	Properties of the materials used in FEA simulation.	12

47 Figure S1: FTIR profile of the materials used in the design of PCL-PEDOT
48 scaffolds: (a) PCL, (b) PCL(NaOH), (c) Gelatin, (d) PEDOT:PSS:GOPS, (e)
49 PEDOT:PSS:DVS.

Figure S2: Stability assay results for the different PEDOT-based coatings tested
on 3D-printed PCL films. Chemical changes on the samples were accompanied
using FTIR also at (A) day 1, (B) day 7 and (C) day 14; (a) GOPS, (b)
GOPS(NaOH), (c) GOPS(NaOH)-Gel, (d) DVS, (e) DVS(NaOH), (f)
DVS(NaOH)-Gel.

Figure S3: Study of the properties of PEDOT:PSS spin-coated films on glass. (**A**) Electroconductivity of the obtained films (mean \pm std, n = 4, * means p < 0.05) and (**B**) respective thickness (mean \pm std, n = 4). Spectrometric analysis of the obtained films, including (**C**) UV/Vis and (**D**) NIR.

Figure S4: Effect of different chemical/thermal conditions on the mechanical properties of PCL and PCL(NaOH) scaffolds: (A) Stress-strain curves and (B) Compressive Young's Modulus (mean \pm std, n = 5; (*) means p < 0.05 when compared with PCL; (+) means p < 0.05 compared to PCL(NaOH); (1) means p < 0.05 compared to PCL (50°C); (2) means p < 0.05 compared to PCL (50°C, H2SO4); (3) means p < 0.05 compared to PCL(NaOH) (50°C)).

Figure S5: SEM images of the different scaffolds after 7 days of mineralization.

Figure S6: FEA analysis of electrical field intensity on the filaments using different
configurations. On the right the results from a thin homogeneous coating; on the
left the results from a whole electroconductive fiber.

- 80 Figure S7(A): FEA analysis of electrical field intensity on the different PCL-
- 81 PEDOT samples tested: Pristine PCL scaffolds.

Figure S7(B): FEA analysis of electrical field intensity on the different PCLPEDOT samples tested: scaffolds with GOPS-based coatings.

- 86 Figure S7C: FEA analysis of electrical field intensity on the different PCL-PEDOT
- 87 samples tested: scaffolds with DVS-based coatings.

Figure S8: Visual aspect of the custom cell-culture plates used for electrical stimulation. (A) Top-view; (B) Side-view of the setup (B1) without and (B2) with the lid on; (C) Transferring of PCL and PCL-PEDOT:PSS scaffolds to the setup;
(D) On going stimulation of scaffolds inside the setup and (D1) respective close-up., where the cathode (red) and anode (black) electrodes are visible.

Table S1: Properties of the materials used in FEA simulation (1* means: unkown

Material	Electroconductivity (S m ⁻¹)	Electric Permittivity
C8 composite	1 x 10 ⁻¹⁴	2.5
Stainless Steel 316LVM	1 x 10 ⁶	1
Culture Medium	1.741 (Experimental)	80.1
PCL	1 x 10 ⁻¹²	2.5
PCL(NaOH)	1 x 10 ⁻¹²	2.5
GOPS	720 ± 320 (This work)	1*
GOPS(NaOH)	300 ± 270 (This work)	1*
GOPS(NaOH)-Gel.	2010 ± 570 (This work)	1*
DVS	860 ± 420 (This work)	1*
DVS(NaOH)	610 ± 400 (This work)	1*
DVS(NaOH)-Gel.	1130 ± 320 (This work)	1*

98 values for electric permittivity that were considered as 1).