Mussel-inspired PDA@PEDOT nanocomposite hydrogel with excellent

mechanical strength, self-adhesive, and self-healing properties for flexible

strain sensor

Xiaoyi Li,^{a,b,1} Xueshan Zhao,^{c,1} Ruiqi liu,^c Hui Wang,^d Shuang Wang,^{a,b} Bing Fan,^e Chenggong Hu,^{a,b*} Haibo Wang^{a,b}

^a Department of Critical Care Medicine, West China Hospital, Sichuan University, Chengdu,

610065, China

^b College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China.

^c Department of Cardiovascular surgery, West China Hospital, Sichuan University, Chengdu,

610065, China.

^d West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University,

Chengdu 610041, PR China.

^e Qingdao Research Institute of Sichuan University, Qingdao 266200, PR China.

* **Corresponding authors:** huchenggong@scu.edu.cn(C. Hu)

¹ The authors contributed equally to this work.

Fig. S1. Infrared thermography during thermotherapy. (a)Back of hand and (b) wrist.

Fig. S2. Conductivity of hydrogels with different PDA@PEDOT content

Fig. S3. The PAPP sensors for mechanotransduction signal applications: swallow and speaking.

Materials	Sensitivity	Response Time (ms)	Mechanical strength (KPa)	Elongation at break (%)	Self-healing Rate (%)	Referen ce
PAA/PANI hydrogels	12.63	222	120	2830	/	1
PNIPAM/CMCS/M WCNT/PANI hydrogels	3.6	/	47	225	1	2
PSA/LiCl/PANI hydrogels	1.74	223	470	600	/	3
PEDOT:PSS-PVA hydrogels	3.18	/	186	270	83.5	4
PL (PEDOT:LS) - Fe ³⁺ -PAA/PVA hydrogels	1.64	253	98.2	460	/	5
CNC- PEDOT : PSS/PVA hydrogels	7.97	/	989. 6	989.6	92.57	6
CMC/PTh/AHC hydrogels	/	/	758	107.4	93.37	7
SDS/PPy/LMPAm hydrogel	/	300	345	1021	/	8
PVA-EGaIn- x@PAAm/PAA@Fe Cl ₃ @PPy hydrogel	0.28	/	344.7	700	/	9
PVA@MXene@PPy hydrogel	1	100	26.78	4351	100	10
PAM/PDA@PEDO T hydrogel	2.82	140	187	3383	95	This work

Table S1. Performance summary of representative hydrogels.

Notes and references

1.D. Liu, H. Zhou, Y. Zhao, C. Huyan, Z. Wang, H. Torun, Z. Guo, S. Dai, B. B. Xu and F. Chen, Small, 2022, 18, e2203258.

2.T. Zhan, H. Xie, J. Mao, S. Wang, Y. Hu and Z. Guo, *ChemistrySelect*, 2021, 6, 4229-4237.

3.Z. Zhang and P. Raffa, European Polymer Journal, 2023, 199.

4.J. Cao, Z. Zhang, K. Li, C. Ma, W. Zhou, T. Lin, J. Xu and X. Liu, Nanomaterials (Basel), 2023, 13.

5.X. Su, S. Zhai, K. Jin, C. Li, A. Chen, Z. Cai, C. Xian and Y. Zhao, ACS Appl Mater Interfaces, 2023, 15, 45526-45535.

6.X. Chai, J. Tang, Y. Li, Y. Cao, X. Chen, T. Chen and Z. Zhang, ACS Appl Mater Interfaces, 2023, 15, 18262-18271.

- 7.N. Danmatam, J. T. H. Pearce and D. Pattavarakorn, Journal of Applied Polymer Science, 2023, 141.
- 8.X. Cao, Q. Cao, T. Zhang, W. Ji, U. Muhammad, J. Chen and Y. Wei, Biomacromolecules, 2024, 25, 143-154.
- 9.Y. Li, Y. Peng, J.-Y. Tian, S. Duan, Y. Fu, S. Zhang and M. Du, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2023, 670.
- 10.Z. Qin, G. Zhao, Y. Zhang, Z. Gu, Y. Tang, J. T. Aladejana, J. Ren, Y. Jiang, Z. Guo, X. Peng, X. Zhang, B. B. Xu and T. Chen, *Small*, 2023, **19**, e2303038.