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Fig.S1 Typical image of the sample mounting for TE parameters measurements.  

Fig. S2 (a, c, e) FESEM images and (b, d, f) corresponding BSE images of polished 

surface of the x = 0.5, 1, 2 sample, respectively. 
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Fig. S3 (a-d) FESEM images of polished surface of the x = 0.5, 1, 1.5, 2 sample, 

respectively. (e-h) The built-in Pore size of the x = 0.5, 1, 1.5, 2 sample, respectively 

(The pores are filled with the red color to guide the eye). 

Fig. S4 FESEM images of fractured surface of (a, c) the sintered x = 0, 2 samples and 

(b, d) the annealed x = 0, 2 samples, respectively.
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Fig. S5 The calculated projected electronic DOS of x = 0 sample.

Fig.S6 Magnetic field dependence of (a,b) Hall resistivity and (c,d) magneto-

conductivity at various temperature for x = 0 and x = 1 sample, respectively.
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Fig.S7 Electron and hole concentration as a function of x at 20 and 60 K for Bi0.85Sb0.15/x 

vol%SbCl3 porous samples, respectively.

Fig.S8 Temperature dependence of partial electron (hole) conductivity of Bi0.85Sb0.15/x 

vol%SbCl3 porous samples.
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Fig.S9 (a) Temperature dependence of partial electron (hole) Seebeck coefficient of 

Bi0.85Sb0.15/x vol%SbCl3 porous samples. (b) The estimated effective mass of electron 

and hole at 180 K. (c,d) Temperature dependence of (eSe, hSh) term for the x = 0 and 

x = 1 samples, respectively.
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Fig.S10 Thermoelectric properties of Bi0.85Sb0.15/1 vol%SbCl3 sample in the magnetic 

field of 0-1 T. Temperature dependence of (a) conductivity, (c) Seebeck coefficient, (e) 

thermal conductivity, (g) power factor, and (h) ZT values, respectively. Magnetic field 

dependence of (b) conductivity, (d) Seebeck coefficient, (f) thermal conductivity, 

respectively.
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Transport properties analysis method

1. Details for the two band model

According to the semi-classical two-band model, the magneto-conductivity (xx) in 

the systems with two kind carriers can be described by:1,2

                            S1
𝑥𝑦(𝐻) =

𝑥𝑦

𝑥𝑥
2 + 𝑥𝑦

2

                 S2
𝑥𝑦(𝐻) = [ 𝑒𝑛ℎ𝜇ℎ

2

1 + 𝜇ℎ
2𝐻2

‒
𝑒𝑛𝑒𝜇𝑒

2

1 + 𝜇𝑒
2𝐻2]𝑒𝐵

                   S3  𝜎(𝐻 = 0) = 𝜎𝑒 + 𝜎ℎ 𝜎𝑒 = 𝑒𝑛𝑒𝜇𝑒 𝜎ℎ = 𝑒𝑛ℎ𝜇ℎ

where ne (or nh ) and e (or h ) are the Hall carrier concentration and Hall mobility of 

electrons (or holes), respectively. e and h are the partial conductivity of electrons and 

holes, respectively. The ne, nh, e, and h at certain temperature can be deduced by 

fitting   H curve with equation S1 and S2. For instance, Fig.S3c-d shows the magnetic 

field dependence of magneto-conductivity at various temperature and the curve fitting 

results for the x = 0 and x = 1 sample, respectively. It is observed that the   H curves 

are well fitted by the two band model equations. 

   

On basis of effective mass model, the transport coefficients can be determined by 

solving the Boltzmann Transport Equations with the relaxation assumption.3,4 In two 

carrier system, the Seebeck coefficient can be expressed as:

                            S4
𝑆 =

𝜎𝑒𝑆𝑒 + 𝜎ℎ𝑆ℎ

𝜎𝑒 + 𝜎ℎ

where Se is the partial Seebeck coefficient of electrons and Sh is the partial Seebeck 

coefficient of holes. The partial electron conductivity (e) and partial hole conductivity 

(h) can be obtained by equation S2.

The partial Seebeck coefficient of electrons and holes can respectively be expressed as:

                 
𝑆𝑒 =‒ (

𝑘𝐵

𝑒
)(

𝑟 + 5/2
𝑟 + 3/2

𝐹𝑟 + 3/2(𝜂𝑒)

𝐹𝑟 + 1/2(𝜂𝑒)
‒ 𝜂𝑒)
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                S5
𝑆ℎ = (

𝑘𝐵

𝑒
)(

𝑟 + 5/2
𝑟 + 3/2

𝐹𝑟 + 3/2(𝜂𝑒)

𝐹𝑟 + 1/2(𝜂𝑒)
‒ 𝜂ℎ)

where kB is the Boltzmann’s constant, e is the electron charge, r is the scattering 

parameter of carriers (for the acoustic scattering mechanism, r equals to -1/2, while for 

the ionized impurity scattering mechanism, r equals to 3/2),5 e is the reduced Fermi 

energy of the conduction band, and h is the reduced Fermi energy of the valence band, 

and F is the Fermi-Dirac integral.  

The Fermi-Dirac integral can be expressed as:

                     S6
𝐹𝑖(𝜂) =

∞

∫
0

𝑥𝑖𝑑𝑥
1 + 𝑒𝑥𝑝(𝑥 ‒ 𝜂)

The relationship between the reduced Fermi energies of the conduction and valence 

bands is: , where g is the reduced bandgap energy (g = Eg/kBT). Since 𝜂𝑒 + 𝜂ℎ = 𝜂𝑔

variation in Eg have effects on thermoelectric transport properties, a temperature 

dependent Eg is required for fully simulation of transport parameters. In our simulation, 

the Eg value of 14 meV at T = 0 K is used based on the result from Bi0.85Sb0.15 single 

crystal.5 The temperature dependence of Eg can be obtained by the following equation:6

                S7𝐸𝑔(𝑇) = 𝐸𝑔(0) + 2.25/(exp (60/𝑇) ‒ 1)

The carrier concentration of electrons (ne) and holes (nh) can be expressed as:

           S8
𝑛𝑒 = 4𝜋(2𝑚𝑒

∗ 𝑘𝐵𝑇

ℎ2 )3/2𝐹1/2(𝜂𝑒) 𝑛ℎ = 4𝜋(2𝑚ℎ
∗ 𝑘𝐵𝑇

ℎ2 )3/2𝐹1/2(𝜂ℎ)

where me
* and mh

* are the density of states effective mass of electrons and holes, 

respectively, and h is the Planck’s constant.

The weighted mobility can be expressed as:7

        

𝜇𝑤 =  
3ℎ3

8𝜋𝑒(2𝑚𝑒
∗ 𝑘𝐵𝑇)3/2

[

exp [ |𝑆|
𝑘𝐵/𝑒

‒ 2]
1 + exp [ ‒ 5( |𝑆|

𝑘𝐵/𝑒
‒ 1)]

+

3

𝜋2

|𝑆|
𝑘𝐵/𝑒

1 + exp [5( |𝑆|
𝑘𝐵/𝑒

‒ 1)]
]

S9

For the thermal conductivity, the electronic thermal conductivity (ele), lattice 
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thermal conductivity (L), and bipolar thermal conductivity (bip) are considered in the 

two band model.8 According to the Wiedemann-Franz relation, ele is defined as 

, where Lorenz number L for the electrons (Le) and holes (Lh) can be 𝜅𝑒𝑙𝑒 = 𝐿𝜎𝑇

respectively expressed as:

              
𝐿𝑒 = (

𝑘𝐵

𝑒
)2[

𝑟 + 7/2
𝑟 + 3/2

𝐹𝑟 + 5/2(𝜂𝑒)

𝐹𝑟 + 1/2(𝜂𝑒)
‒ (

𝑟 + 5/2
𝑟 + 3/2

𝐹𝑟 + 3/2(𝜂𝑒)

𝐹𝑟 + 1/2(𝜂𝑒)
)2]

           
𝐿ℎ = (

𝑘𝐵

𝑒
)2[

𝑟 + 7/2
𝑟 + 3/2

𝐹𝑟 + 5/2(𝜂ℎ)

𝐹𝑟 + 1/2(𝜂ℎ)
‒ (

𝑟 + 5/2
𝑟 + 3/2

𝐹𝑟 + 3/2(𝜂ℎ)

𝐹𝑟 + 1/2(𝜂ℎ)
)2]

S10

Thus, the e, bip and the total thermal conductivity can be expressed as:

                     S11𝜅𝑒𝑙𝑒 = 𝐿𝑒𝜎𝑒𝑇 + 𝐿ℎ𝜎ℎ𝑇

                  S12
𝜅𝑏𝑖𝑝 = (

𝜎𝑒𝜎ℎ

𝜎𝑒 + 𝜎ℎ
)(𝑆𝑒 ‒ 𝑆ℎ)2𝑇

                     S13𝜅𝑡𝑜𝑡 = 𝜅𝑒𝑙𝑒 + 𝜅𝐿 + 𝜅𝑏𝑖𝑝

2. Debye-Callaway model for calculating the lattice thermal conductivity

According to the Debye-Callaway model,9-11 L can be expressed as a sum of the 

spectral lattice thermal conductivity S(f) from different frequencies (f):

        S14
𝜅𝐿 = ∫𝜅𝑆(𝑓)𝑑𝑓 =  

1
3

𝑓𝐷

∫
0

𝐶𝑆(𝑓)𝑣𝑔(𝑓)2𝜏𝑡𝑜𝑡(𝑓)𝑑𝑓

The S (f) is determined by the spectral heat capacity CS(f), the phonon group velocity 

vg(f), and the total relaxation time τtot(f). For simple approximation, vg(f) is assumed as 

a constant value vs (sound velocity). The Debye frequency fD can be expressed as:  

                    S15
𝑓𝐷 =

𝑘𝐵𝜃𝐷

ħ
= (

6𝜋2𝑁
𝑉

)1/3𝑣𝑆

where θD is Debye temperature, N is the number of atoms in a unit cell volume, V is the 
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unit-cell volume, kB is the Boltzmann constant and ħ is the reduced Plank constant. The 

CS(f) can be expressed as:

                          S16
𝐶𝑆(𝑓) =

3𝑘𝐵𝑓2

2𝜋2𝑣𝑆
2

Thus, L and S are expressed as:

          S17
𝜅𝐿 =  

3𝑘𝐵𝑓2

2𝜋2𝑣𝑆

(
𝑘𝐵𝑇

ħ
)3

𝜃𝐷/𝑇

∫
0

𝜏𝑡𝑜𝑡(𝑥)
𝑥2𝑒𝑥𝑝(𝑥)

[exp (𝑥) ‒ 1]2
𝑑𝑓

               S18
𝜅𝑆 =  

𝑘𝐵

2𝜋2𝑣𝑆

(
𝑘𝐵𝑇

ħ
)3𝜏𝑡𝑜𝑡(𝑥)

𝑥2𝑒𝑥𝑝(𝑥)

[exp (𝑥) ‒ 1]2

where x = ℏf / kBT is the reduced phonon frequency. According to Matthiessen’s rule, 

τtot(x) is the reciprocal sum of the relaxation times from different phonon scattering 

mechanisms including the Umklapp phonon-phonon scatterings (U), normal phonon-

phonon scatterings (N), grain boundaries scatterings (B), point defects scatterings (PD), 

and nano-precipitates phonon scatterings (NP). For our porous sample, the pores are 

regarded as the precipitates, and the predominant phonon scattering mechanisms 

including U, N, B and NP are considered. So, τtot is calculated by

          S19𝜏𝑡𝑜𝑡
‒ 1 =  𝜏𝑈

‒ 1 + 𝜏𝑁
‒ 1 + 𝜏𝐵

‒ 1 + 𝜏𝑁𝑃
‒ 1 + …

The U
-1 is calculated by 

𝜏𝑈
‒ 1 =  

ħ𝛾2𝑓2𝑇

𝑀𝑎𝑣𝑣𝑆
2𝜃𝐷

exp ( ‒
𝜃𝐷

3𝑇
)

where Mav and γ are the average atomic mass and Grüneisen parameter respectively. 

The 𝜏N
−1 can be simply expressed as 𝜏U

−1 with an additional factor β, as

                           S20𝜏𝑁
‒ 1 =  𝛽𝜏𝑈

‒ 1

The B
-1 is calculated by

                                 S21
𝜏𝐵

‒ 1 =  
𝑣𝑆

𝐷

where D is the average grain size of polycrystalline materials.

The 𝜏NP
−1 is calculated by
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   S22
𝜏𝑁𝑃

‒ 1 =  [(2𝜋𝑅𝑁𝑃
2) ‒ 1 + (𝜋𝑅𝑁𝑃

24
9

(
Δ𝜌
𝜌

)2(
𝑓𝑅𝑁𝑃

𝑣𝑆
)4) ‒ 1] ‒ 1𝑁𝑁𝑃

where RNP and NNP are the radius and number density for the pores, ρ and Δρ are the 

matrix density and density difference between the pore and matrix. The parameters for 

modeling κL in this work are shown in Table S1.

Table.S1 Parameters for modeling the lattice thermal conductivity of Bi0.85Sb0.15/x 

vol%SbCl3 porous materials. The lattice parameter used for the calculation is the 

lattice constant of rhombohedral unit cell transformed by hexagonal unit cell.

Parameters Values

Grüneisen parameter γ 1.212

Sound velocity vs (m·s–1) 117913

Transverse sound velocity vt (m·s–1) 105013

Longitudinal sound velocity vl (m·s–1) 212313

Debye temperature θD (K) 12013

Lattice parameter a (Å) 4.7205 (this work)
Average atomic mass Mav (kg) 3.2810-25

Grain size D (μm) 25 (this work)
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Matrix density ρ (g·cm–3) 9.25 (this work)

Density difference between matrix and pores Δρ (g·cm–3) 7.96

Mean radius for the micropores (μm) 1(fitted)

Number density of micropores (m-3) 7.9810-18 (fitted)
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