Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

# Supplementary material

## Cryogenic thermoelectric enhancements in SbCl<sub>3</sub>-doped porous

# Bi<sub>0.85</sub>Sb<sub>0.15</sub> alloys

Jian Wang,<sup>a</sup> Feng Luo,<sup>a</sup> Can Zhu,<sup>a</sup> Jiafu Wang,<sup>a,b</sup> Xiong He,<sup>c</sup> Yan Zhang,<sup>d,e</sup> Hongxia

Liu,<sup>d,e,\*</sup> Zhigang Sun<sup>a,d,e,\*</sup>

<sup>a</sup> State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China.

<sup>b</sup> School of Science, Wuhan University of Technology, Wuhan 430070, China.

<sup>c</sup> Hubei Engineering Research Center of Weak Magnetic-field Detection, College of Science, China Three Gorges University, Yichang 443002, China.

<sup>d</sup> School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China.

<sup>e</sup> Laboratory of Magnetic and Electric Functional Materials and the Applications, The Key Laboratory of Shanxi Province, Taiyuan 030024, China.

\* Corresponding author

Email: <u>sun\_zg@whut.edu.cn</u> (Prof. Zhigang Sun) and <u>hongxliu@126.com</u> (Dr. Hongxia Liu)



Fig.S1 Typical image of the sample mounting for TE parameters measurements.



Fig. S2 (a, c, e) FESEM images and (b, d, f) corresponding BSE images of polished surface of the x = 0.5, 1, 2 sample, respectively.



Fig. S3 (a-d) FESEM images of polished surface of the x = 0.5, 1, 1.5, 2 sample, respectively. (e-h) The built-in Pore size of the x = 0.5, 1, 1.5, 2 sample, respectively (The pores are filled with the red color to guide the eye).



Fig. S4 FESEM images of fractured surface of (a, c) the sintered x = 0, 2 samples and (b, d) the annealed x = 0, 2 samples, respectively.



Fig. S5 The calculated projected electronic DOS of x = 0 sample.



Fig.S6 Magnetic field dependence of (a,b) Hall resistivity and (c,d) magnetoconductivity at various temperature for x = 0 and x = 1 sample, respectively.



Fig.S7 Electron and hole concentration as a function of x at 20 and 60 K for  $Bi_{0.85}Sb_{0.15}/x$ *vol*%SbCl<sub>3</sub> porous samples, respectively.



Fig.S8 Temperature dependence of partial electron (hole) conductivity of  $Bi_{0.85}Sb_{0.15}/x$ *vol*%SbCl<sub>3</sub> porous samples.



Fig.S9 (a) Temperature dependence of partial electron (hole) Seebeck coefficient of  $Bi_{0.85}Sb_{0.15}/x \ vol\%SbCl_3$  porous samples. (b) The estimated effective mass of electron and hole at 180 K. (c,d) Temperature dependence of ( $\sigma_e S_e$ ,  $\sigma_h S_h$ ) term for the x = 0 and x = 1 samples, respectively.



Fig.S10 Thermoelectric properties of  $Bi_{0.85}Sb_{0.15}/1$  vol%SbCl<sub>3</sub> sample in the magnetic field of 0-1 T. Temperature dependence of (a) conductivity, (c) Seebeck coefficient, (e) thermal conductivity, (g) power factor, and (h) *ZT* values, respectively. Magnetic field dependence of (b) conductivity, (d) Seebeck coefficient, (f) thermal conductivity, respectively.

#### Transport properties analysis method

### 1. Details for the two band model

According to the semi-classical two-band model, the magneto-conductivity ( $\sigma_{xx}$ ) in the systems with two kind carriers can be described by:<sup>1,2</sup>

$$\sigma_{xy}(H) = \frac{\rho_{xy}}{\rho_{xx}^2 + \rho_{xy}^2}$$
S1

$$\sigma_{xy}(H) = \left[\frac{en_h \mu_h^2}{1 + \mu_h^2 H^2} - \frac{en_e \mu_e^2}{1 + \mu_e^2 H^2}\right] eB$$
 S2

$$\sigma(H=0) = \sigma_e + \sigma_h \qquad \sigma_e = e n_e \mu_e \qquad \sigma_h = e n_h \mu_h \qquad S3$$

where  $n_e$  (or  $n_h$ ) and  $\mu_e$  (or  $\mu_h$ ) are the Hall carrier concentration and Hall mobility of electrons (or holes), respectively.  $\sigma_e$  and  $\sigma_h$  are the partial conductivity of electrons and holes, respectively. The  $n_e$ ,  $n_h$ ,  $\mu_e$ , and  $\mu_h$  at certain temperature can be deduced by fitting  $\sigma \sim H$  curve with equation S1 and S2. For instance, Fig.S3c-d shows the magnetic field dependence of magneto-conductivity at various temperature and the curve fitting results for the x = 0 and x = 1 sample, respectively. It is observed that the  $\sigma \sim H$  curves are well fitted by the two band model equations.

On basis of effective mass model, the transport coefficients can be determined by solving the Boltzmann Transport Equations with the relaxation assumption.<sup>3,4</sup> In two carrier system, the Seebeck coefficient can be expressed as:

$$S = \frac{\sigma_e S_e + \sigma_h S_h}{\sigma_e + \sigma_h}$$
 S4

where  $S_e$  is the partial Seebeck coefficient of electrons and  $S_h$  is the partial Seebeck coefficient of holes. The partial electron conductivity ( $\sigma_e$ ) and partial hole conductivity ( $\sigma_h$ ) can be obtained by equation S2.

The partial Seebeck coefficient of electrons and holes can respectively be expressed as:

$$S_e = -\left(\frac{k_B}{e}\right)\left(\frac{r+5/2F_{r+3/2}(\eta_e)}{r+3/2F_{r+1/2}(\eta_e)} - \eta_e\right)$$

$$S_h = \left(\frac{k_B}{e}\right) \left(\frac{r+5/2F_{r+3/2}(\eta_e)}{r+3/2F_{r+1/2}(\eta_e)} - \eta_h\right)$$
 S5

where  $k_{\rm B}$  is the Boltzmann's constant, *e* is the electron charge, *r* is the scattering parameter of carriers (for the acoustic scattering mechanism, *r* equals to -1/2, while for the ionized impurity scattering mechanism, *r* equals to 3/2),<sup>5</sup>  $\eta_{\rm e}$  is the reduced Fermi energy of the conduction band, and  $\eta_{\rm h}$  is the reduced Fermi energy of the valence band, and *F* is the Fermi-Dirac integral.

The Fermi-Dirac integral can be expressed as:

$$F_i(\eta) = \int_0^\infty \frac{x^i dx}{1 + exp^{[in]}(x - \eta)}$$
 S6

The relationship between the reduced Fermi energies of the conduction and valence bands is:  $\eta_e + \eta_h = \eta_g$ , where  $\eta_g$  is the reduced bandgap energy ( $\eta_g = E_g/k_BT$ ). Since variation in  $E_g$  have effects on thermoelectric transport properties, a temperature dependent  $E_g$  is required for fully simulation of transport parameters. In our simulation, the  $E_g$  value of 14 meV at T = 0 K is used based on the result from Bi<sub>0.85</sub>Sb<sub>0.15</sub> single crystal.<sup>5</sup> The temperature dependence of  $E_g$  can be obtained by the following equation:<sup>6</sup>

$$E_g(T) = E_g(0) + 2.25/(\exp(60/T) - 1)$$
 S7

The carrier concentration of electrons  $(n_e)$  and holes  $(n_h)$  can be expressed as:

$$n_e = 4\pi \left(\frac{2m_e^* k_B T}{h^2}\right)^{3/2} F_{1/2}(\eta_e) \qquad n_h = 4\pi \left(\frac{2m_h^* k_B T}{h^2}\right)^{3/2} F_{1/2}(\eta_h) \qquad S8$$

where  $m_e^*$  and  $m_h^*$  are the density of states effective mass of electrons and holes, respectively, and *h* is the Planck's constant.

The weighted mobility can be expressed as:<sup>7</sup>

$$\mu_{w} = \frac{3h^{3}\sigma}{8\pi e(2m_{e}^{*}k_{B}T)^{3/2}} \left[\frac{\exp\left[\frac{|S|}{k_{B}/e} - 2\right]}{1 + \exp\left[-5\left(\frac{|S|}{k_{B}/e} - 1\right)\right]} + \frac{\frac{3}{\pi^{2}k_{B}/e}}{1 + \exp\left[5\left(\frac{|S|}{k_{B}/e} - 1\right)\right]}\right]$$
S9

For the thermal conductivity, the electronic thermal conductivity ( $\kappa_{ele}$ ), lattice 9

thermal conductivity ( $\kappa_L$ ), and bipolar thermal conductivity ( $\kappa_{bip}$ ) are considered in the two band model.<sup>8</sup> According to the Wiedemann-Franz relation,  $\kappa_{ele}$  is defined as  $\kappa_{ele} = L\sigma T$ , where Lorenz number *L* for the electrons ( $L_e$ ) and holes ( $L_h$ ) can be respectively expressed as:

$$L_{e} = \left(\frac{k_{B}}{e}\right)^{2} \left[\frac{r + 7/2F_{r+5/2}(\eta_{e})}{r + 3/2F_{r+1/2}(\eta_{e})} - \left(\frac{r + 5/2F_{r+3/2}(\eta_{e})}{r + 3/2F_{r+1/2}(\eta_{e})}\right)^{2}\right]$$
$$L_{h} = \left(\frac{k_{B}}{e}\right)^{2} \left[\frac{r + 7/2F_{r+5/2}(\eta_{h})}{r + 3/2F_{r+1/2}(\eta_{h})} - \left(\frac{r + 5/2F_{r+3/2}(\eta_{h})}{r + 3/2F_{r+1/2}(\eta_{h})}\right)^{2}\right]$$
S10

Thus, the  $\kappa_{e}$ ,  $\kappa_{bip}$  and the total thermal conductivity can be expressed as:

$$\kappa_{ele} = L_e \sigma_e T + L_h \sigma_h T$$

$$\kappa_{bip} = (\frac{\sigma_e \sigma_h}{\sigma_e + \sigma_h})(S_e - S_h)^2 T$$
 S12

$$\kappa_{tot} = \kappa_{ele} + \kappa_L + \kappa_{bip}$$
 S13

#### 2. Debye-Callaway model for calculating the lattice thermal conductivity

According to the Debye-Callaway model,<sup>9-11</sup>  $\kappa_L$  can be expressed as a sum of the spectral lattice thermal conductivity  $\kappa_S(f)$  from different frequencies (*f*):

$$\kappa_L = \int \kappa_S(f) df = \frac{1}{3} \int_0^{T_D} C_S(f) v_g(f)^2 \tau_{tot}(f) df$$
 S14

The  $\kappa_{\rm S}(f)$  is determined by the spectral heat capacity  $C_{\rm S}(f)$ , the phonon group velocity  $v_{\rm g}(f)$ , and the total relaxation time  $\tau_{\rm tot}(f)$ . For simple approximation,  $v_{\rm g}(f)$  is assumed as a constant value  $v_{\rm s}$  (sound velocity). The Debye frequency  $f_{\rm D}$  can be expressed as:

$$f_D = \frac{k_B \theta_D}{\hbar} = \left(\frac{6\pi^2 N}{V}\right)^{1/3} v_S$$
 S15

where  $\theta_D$  is Debye temperature, N is the number of atoms in a unit cell volume, V is the

10

unit-cell volume,  $k_B$  is the Boltzmann constant and  $\hbar$  is the reduced Plank constant. The  $C_S(f)$  can be expressed as:

$$C_{S}(f) = \frac{3k_{B}f^{2}}{2\pi^{2}v_{S}^{2}}$$
 S16

Thus,  $\kappa_L$  and  $\kappa_S$  are expressed as:

$$\kappa_{L} = \frac{3k_{B}f^{2}}{2\pi^{2}v_{S}} (\frac{k_{B}T}{\hbar})^{3} \int_{0}^{\theta_{D}/T} \tau_{tot}(x) \frac{x^{2}exp[x]}{\left[\exp(x) - 1\right]^{2}} df$$
 S17

$$\kappa_{S} = \frac{k_{B}}{2\pi^{2}v_{S}} (\frac{k_{B}T}{\hbar})^{3} \tau_{tot}(x) \frac{x^{2} exp^{[10]}(x)}{\left[\exp(x) - 1\right]^{2}}$$
S18

where  $x = \hbar f / k_B T$  is the reduced phonon frequency. According to Matthiessen's rule,  $\tau_{tot}(x)$  is the reciprocal sum of the relaxation times from different phonon scattering mechanisms including the Umklapp phonon-phonon scatterings (U), normal phononphonon scatterings (N), grain boundaries scatterings (B), point defects scatterings (PD), and nano-precipitates phonon scatterings (NP). For our porous sample, the pores are regarded as the precipitates, and the predominant phonon scattering mechanisms including U, N, B and NP are considered. So,  $\tau_{tot}$  is calculated by

$$\tau_{tot}^{-1} = \tau_U^{-1} + \tau_N^{-1} + \tau_B^{-1} + \tau_{NP}^{-1} + \dots$$
 S19

The  $\tau_{\rm U}$ -1 is calculated by

$$\tau_U^{-1} = \frac{\hbar \gamma^2 f^2 T}{M_{av} v_S^2 \theta_D} \exp\left(-\frac{\theta_D}{3T}\right)$$

where  $M_{\rm av}$  and  $\gamma$  are the average atomic mass and Grüneisen parameter respectively. The  $\tau_{\rm N}^{-1}$  can be simply expressed as  $\tau_{\rm U}^{-1}$  with an additional factor  $\beta$ , as

$$\tau_N^{-1} = \beta \tau_U^{-1}$$
 S20

The  $\tau_{\rm B}^{-1}$  is calculated by

$$\tau_B^{-1} = \frac{\nu_S}{D}$$
 S21

where D is the average grain size of polycrystalline materials.

The  $\tau_{\rm NP}^{-1}$  is calculated by

$$\tau_{NP}^{-1} = \left[ (2\pi R_{NP}^{2})^{-1} + (\pi R_{NP}^{2} \frac{4}{9} (\frac{\Delta \rho}{\rho})^{2} (\frac{fR_{NP}}{v_{S}})^{4})^{-1} \right]^{-1} N_{NP}$$
S22

where  $R_{\rm NP}$  and  $N_{\rm NP}$  are the radius and number density for the pores,  $\rho$  and  $\Delta \rho$  are the matrix density and density difference between the pore and matrix. The parameters for modeling  $\kappa_{\rm L}$  in this work are shown in Table S1.

Table.S1 Parameters for modeling the lattice thermal conductivity of  $Bi_{0.85}Sb_{0.15}/x$ *vol*%SbCl<sub>3</sub> porous materials. The lattice parameter used for the calculation is the lattice constant of rhombohedral unit cell transformed by hexagonal unit cell.

| Parameters                                       | Values                 |
|--------------------------------------------------|------------------------|
| Grüneisen parameter γ                            | 1.2 <sup>12</sup>      |
| Sound velocity $vs (m \cdot s^{-1})$             | 1179 <sup>13</sup>     |
| Transverse sound velocity $vt(m \cdot s^{-1})$   | 105013                 |
| Longitudinal sound velocity $vl(m \cdot s^{-1})$ | 2123 <sup>13</sup>     |
| Debye temperature $\theta_{\rm D}({\rm K})$      | 120 <sup>13</sup>      |
| Lattice parameter a (Å)                          | 4.7205 (this work)     |
| Average atomic mass Mav (kg)                     | 3.28×10 <sup>-25</sup> |
| Grain size D (µm)                                | 25 (this work)         |

| Matrix density $\rho$ (g·cm <sup>-3</sup> )                        | 9.25 (this work)                |
|--------------------------------------------------------------------|---------------------------------|
| Density difference between matrix and pores $\Delta \rho$ (g·cm-3) | 7.96                            |
| Mean radius for the micropores (µm)                                | 1(fitted)                       |
| Number density of micropores (m <sup>-3</sup> )                    | 7.98×10 <sup>-18</sup> (fitted) |

### **References:**

- W. Liu, Z. Wang, J. Wang, H. Bai, Z. Li, J. Sun, X. Zhou, J. Luo, W. Wang, C. Zhang, J. Wu, Y. Sun, Z. Zhu, Q. Zhang, X. Tang, Adv. Funct. Mater, 2022, 32, 2202143.
- Z. Chen, X. Zhang, J. Ren, Z. Zeng, Y. Chen, J. He, L. Chen, Y. Pei, Nat. Commun, 2021, 12, 3837.
- 3. V. Jovovic, J. P. Heremans, Phys. Rev. B, 2008, 77, 245204.
- Y. Hasegawa, Y. Ishikawa, T. Saso, H. Shirai, H. Morita, T. Komine, H. Nakamura, Physica B, 2006, 382, 140-146.
- 5. S. Gao, J. Gaskins, X. Hu, K. Tomko, P. Hopkins, S. J. Poon, Sci Rep, 2019, 9, 14892.
- 6. N. M. Ravindra, V. K. Srivastava, J. Phys. Chem. Solids, 1980, 41, 1289-1290.
- G. J. Snyder, A. H. Snyder, M. Wood, R. Gurunathan, B. H. Snyder, C. Niu, Adv. Mater., 2020, 32, 2001537.
- 8. M. Otsuka, R. Homma, Y. Hasegawa, J. Electron. Mater., 2017, 46, 2752-2764.
- 9. J. Callaway, H. C. von Baeyer, Physical Review, 1960, 120, 1149.
- C. Zhu, F. Luo, J. Wang, S. Zhang, J. Wang, H. Liu, Z. Sun, J. Mater. Chem. C, 2022, 10, 9052-9061.

- T. K. Dey, K. D. Chaudhuri, Journal of Low Temperature Physics, 1976, 23, 419-426.
- 12. G. K. White, Journal of Physics C: Solid State Physics, 1972, 5, 2731.
- 13. S. Singh, I. Valencia-Jaime, O. Pavlic, A. H. Romero, Phys. Rev. B, 2018, 97, 11.