Intense 1400-1600 nm circularly polarised luminescence from homo- and heteroleptic chiral erbium complexes

Oliver G. Willis, ${ }^{\text {a }}$ Andrea Pucci, ${ }^{\text {a }}$ Enrico Cavalli, ${ }^{\text {b }}$ Francesco Zinna *a and Lorenzo Di Bari ${ }^{* a}$

Compound preparation

The synthesis of $\mathrm{CsEr}(\mathrm{hfbc})_{4}$ followed the literature procedure by Zinna et al. ${ }^{1}$ The synthesis of $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$ followed a modified procedure by Walsh and co-workers ${ }^{2}$ which has been published by Di Bari et al. ${ }^{3}$ The synthesis of each enantiomer of the complexes $\operatorname{Er}(\mathrm{NTA})_{3}{ }^{\mathrm{i}} \mathrm{PrPyBox}$ and $\operatorname{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$ followed a modified procedure by Zinna and Di Bari. ${ }^{4}$ The reactions were performed under a N_{2} atmosphere with reactants and solvents used as received from the supplier with no further purification. CHNS analyses were performed with a vario MICRO cube CHNOS Elemental Analyzer GmbH. Both CsEr(hfbc) 4 and $[T M G-$ $\left.\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$ have been previously fully characterized. ${ }^{3}$

Preparation of $\mathrm{Er}(\mathrm{NTA})_{3} .2 \mathrm{H}_{2} \mathrm{O}$

KOH ($52 \mathrm{mg}, 0.9 \mathrm{mmol}$) was dissolved in ethanol (2 mL) and added to a solution of 4,4,4-trifluoro-1-(2-naphthyl)-1,3-butanedione (NTA, $245 \mathrm{mg}, 0.9 \mathrm{mmol}$) in ethanol (10 mL) under stirring. ErCl_{3} hexahydrate ($117 \mathrm{mg}, 0.3 \mathrm{mmol}$) was dissolved in water (2 mL) and added dropwise to the reaction mixture. The solution was then refluxed under stirring for 4 hours. The solvent was removed under reduced pressure and the crude solid dissolved in dichloromethane (10 mL) and extracted three times with water (5 mL). The organic phase was dried under $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then filtered. The solvent removed under reduced pressure to yield the title compound as a yellow solid ($257 \mathrm{mg}, 86 \%$) and used without any further purification.

Preparation of $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})-{ }^{\text {- }}$ PrPyBox

$\mathrm{Er}(\mathrm{NTA})_{3} . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.05 \mathrm{mmol})$ and (R,R)-i $\operatorname{PrPyBox}(15 \mathrm{mg}, 0.05 \mathrm{mmol})$ were dissolved in ethanol (4 mL) and heated under stirring at $60^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure to give a crude solid. The solid was purified by dissolving in dichloromethane (5 mL) and adding petroleum ether (15 mL). The precipitate was collected by filtration and dried under vacuum to give $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})-{ }^{-}$PrPyBox as a white solid ($39 \mathrm{mg}, 62 \%$). Found: C, 56.5; H, 3.75; N, 2.7. Calc. for $\mathrm{C}_{59} \mathrm{H}_{50} \mathrm{ErF}_{9} \mathrm{~N}_{3} \mathrm{O}_{8} .0 .25 \mathrm{C}_{4} \mathrm{H}_{10}$: C , 56.2; H, 4.1; N, 3.3.

Preparation of $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{~S}, \mathrm{~S})$ - ${ }^{\text {P PrPyBox }}$

The same procedure as for $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})-\mathrm{i} \operatorname{PrPyBox}$ was followed to give $\mathrm{Er}(\mathrm{NTA})_{3}(\mathrm{~S}, \mathrm{~S})-\mathrm{i} \operatorname{PrPyBox}(37 \mathrm{mg}$, $59 \%)$. Found: C, 55.7 ; H , 3.55; N, 3.7.Calc. for $\mathrm{C}_{59} \mathrm{H}_{50} \mathrm{ErF}_{9} \mathrm{~N}_{3} \mathrm{O}_{8}$: C, 55.9; H, 4.0; N, 3.3.

Preparation of $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})$-PhPyBox

$\mathrm{Er}(\mathrm{NTA})_{3} . \mathrm{H}_{2} \mathrm{O}(50 \mathrm{mg}, 0.05 \mathrm{mmol})$ and (R,R)-PhPyBox ($18 \mathrm{mg}, 0.05 \mathrm{mmol}$) were dissolved in ethanol (4 mL) and heated under stirring at $60^{\circ} \mathrm{C}$ for 4 h . The solvent was removed under reduced pressure to give a crude solid. The solid was purified by dissolving in dichloromethane (5 mL) and adding petroleum ether (15 mL). The precipitate was collected by filtration and dried under vacuum
 3.5; N, 3.15.

Preparation of $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{~S}, \mathrm{~S})-$ PhPyBox

The same procedure as for $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})-\mathrm{PhPyBox}$ was followed to give $\mathrm{Er}(\mathrm{NTA})_{3}(\mathrm{~S}, \mathrm{~S})-\mathrm{PhPyBox}(50 \mathrm{mg}, 75 \%)$. Found: C, 59.2 ; H , 3.95; N, 3.0. Calc. for $\mathrm{C}_{65} \mathrm{H}_{46} \mathrm{ErF}_{9} \mathrm{~N}_{3} \mathrm{O}_{8} .0 .5 \mathrm{C}_{6} \mathrm{H}_{14}$: C, 59.25; H, 3.9; N, 3.05.

Instrumentation

Lifetime measurements

Lifetime measurements were carried out using an Edinburgh FLS1000 spectrofluorometer equipped with a pulsed Xe lamp, a double excitation monochromator, a single emission monochromator and a N_{2} cooled NIR extended photomultiplier. All the spectra were measured at room temperature in THF solutions ranging in concentrations from 0.1 to 1 mM and corrected for the spectral responsiveness of the setup. The decay time was evaluated after reconvolution of the experimental decay profile taking into account the Instrumental Response Function (IRF), using the routine implemented in the software of the spectrofluorometer.

Quantum yield measurements

Luminescence quantum yields (or External Quantum Efficiency, EQE, $\mathrm{Q}_{\mathrm{x}}^{\mathrm{L}}$) were measured with a Horiba Jobin-Yvon Fluorolog ${ }^{\circledR}-3$ spectrofluorometer equipped with a 450 W Xenon arc lamp, double-grating excitation, and single-grating emission monochromators and with a liquid nitrogen-cooled InGaAs detector. The EQE and Internal Quantum Efficiency (IQE, $\mathrm{Q}_{\mathrm{Er}}^{\mathrm{Er}}$) were calculated using Eqs. 1 and 2 respectively. The fluorescence quantum yields were measured in THF relative to $\mathrm{Yb}(\mathrm{TTA})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{Q}_{\mathrm{r}}^{\mathrm{L}}\right.$ $=0.35 \%$ in toluene). ${ }^{5}$

$$
\begin{gathered}
Q_{x}^{L}=Q_{r}^{L} \cdot \frac{A_{r}(\lambda)}{D_{r} \cdot n_{r}^{2}} \cdot \frac{D_{x} \cdot n_{x}^{2}}{A_{x}(\lambda)} \\
Q_{L}^{E r}=\eta_{\text {sens }} \times Q_{E r}^{E r}=\eta_{\text {sens }} \times \tau_{\text {obs }} / \tau_{\text {rad }}
\end{gathered}
$$

Equation S1

Equation S2

In the previous two equations, A is the absorbance at the excitation wavelength, n is the refractive index and D the luminescence integrated intensity. The indices r and x stand for reference and sample respectively. The absorption and excitation wavelengths for complexes $\mathrm{CsEr}(\mathrm{hfbc})_{4}, \mathrm{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$ and $\mathrm{Er}(\mathrm{NTA})_{3}{ }^{\mathrm{i} P r P y B o x}$ was at 332 nm and at 365 nm for $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$. The observed lifetime is τ_{obs} and $\tau_{\text {rad }}$ is the radiative lifetime of the Ln (III). Finally, the efficiency of the ligand-to-erbium energy transfer process is given as $\eta_{\text {sens }}$.

UV-Vis/CD

UV-Vis spectra were recorded using a Jasco-V650 spectrophotometer in the spectral range of 200 to 600 nm . All samples were measured in THF with concentrations ranging from 0.6 to 3.2 mM at room temperature. The same solutions were used to record CD spectra using a J1500 spectropolarimeter in 0.01 cm optical glass cells and averaging from 1 to 16 accumulations.

NIR-CD/NIR-Abs

NIR-CD measurements were performed using a Jasco J200 spectropolarimeter provided with an ADC system. All complexes were measured in THF with concentrations ranging from 16 mM to 37 mM , depending on the complexes solubility, in 1 cm optical glass cells with parameters as follows: Scan speed $100 \mathrm{~nm} / \mathrm{min}$, slit width $2-4 \mathrm{~nm}$, integration time 4 sec and accumulations from 3 to 8 . The spectra were baseline corrected by subtraction of the solvent spectrum. The same solutions were used to measure the corresponding NIR absorption spectra using a Cary 5000 UV-Vis-NIR spectrophotometer.

NIR-CPL

Emission spectra were recorded using a Horiba Jobin-Yvon Fluorolog® ${ }^{\circledR}$-3 spectrofluorometer equipped with a 450 W Xenon arc lamp, double-grating excitation, and single-grating emission monochromators and with a liquid nitrogen-cooled InGaAs detector. Discrimination of left- and right-CP light was achieved using a quarter waveplate and linear polarizer, suitable within the 1400 to 1600 nm spectral region, from Edmund Optics. The optics were placed into custom 3D-printed holders ($52 \times 52 \mathrm{~mm}$), which were placed between the sample and detector. Subsequent manual rotations of the QWP by 90° allowed for the measurements of the two states of polarization. The CPL ($I_{L}-I_{R}$) and total emission (average of I_{L} and I_{R}) were then extracted. Each fluorescence measurement utilized a 0.5 sec integration time over 201 points meaning each scan lasted ca. 1 min 40 sec . For $\mathrm{CsEr}(\mathrm{hfbc})_{4}$, one full rotation with one acquired emission profile per position was measured. $\operatorname{The} \operatorname{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$ complex needed three full rotations and one spectrum per position, while $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOL} \text { ate })_{3}$ needed one complete rotation with eight accumulations per positions. Overall, the total time for measuring the CPL ranged from ca. 6 minutes to one hour.

Figure S1. The 3D-printed holder for the QWP and LP, showing both the front view, each of the individual layers and finally the combined set-up.

Figure S2. Left: The NIR-CPL spectrum of Yb(facam) 3^{3+} in DMSO with normalised average total emission traced in the background (in grey, $\lambda_{\text {ex }}=325 \mathrm{~nm}$). Right: The glum ${ }^{-}$ vs-wavelength plot for $\mathrm{Yb}(\text { facam })_{3}{ }^{3+}$ measured in this work (Black) and by Parker ${ }^{6}$ (Red).

$\mathrm{B}_{\mathrm{CPL}}$

Given the complex structure of CPL spectra with several opposite bands within the same manifold, a more general definition of $\mathrm{B}_{\mathrm{CPL}}$ factor was employed:

$$
\mathrm{B}_{\mathrm{CPL}}=\varepsilon \cdot \phi \cdot \frac{1}{2} \frac{\int_{\lambda_{\mathrm{a}}}^{\lambda_{\mathrm{b}}} \mathrm{I}(\lambda) \mathrm{g}(\lambda) \mathrm{d} \lambda}{\int_{\lambda_{\mathrm{i}}}^{\lambda_{\mathrm{f}}} \mathrm{I}(\lambda) \mathrm{d} \lambda}
$$

Where the integral in the numerator has to be estimated between the extrema of the considered transition (λ_{a}, λ_{b}), while the integral in the denominator is calculated over the whole emission range (λ_{i}, λ_{f}). Note that if $g(\lambda)$ does not change sign within a term-to-term transition and it is approximately constant $(\mathrm{g}(\lambda) \simeq \overline{\mathrm{g}})$, then the above definition is reduced to:

$$
\mathrm{B}_{\mathrm{CPL}}=\varepsilon \cdot \phi \cdot \frac{1}{2} \overline{\mathrm{~g}} \cdot \frac{\int_{\lambda_{\mathrm{a}}}^{\lambda_{\mathrm{b}}} \mathrm{I}(\lambda) \mathrm{d} \lambda}{\int_{\lambda_{\mathrm{i}}}^{\lambda_{f}} \mathrm{I}(\lambda) \mathrm{d} \lambda}=\varepsilon \cdot \phi \cdot \frac{1}{2} \overline{\mathrm{~g}} \cdot \beta
$$

According to the usual definition applicable to lanthanide CPL. ${ }^{7}$

Additional spectra

Figure S3. IGALN-series InGaAs photodiode typical spectral response recreated from the HORIBA scientific manual.

Spectra for $\mathbf{C s E r}(\mathrm{hfbc})_{4}$

Figure S4. Absorption spectra of $\mathrm{CsEr}(\mathrm{hfbc})_{4}$ in black, with the excitation spectrum in red superimposed ($\lambda_{\text {em }}=1542 \mathrm{~nm}$). The emission spectrum is shown in blue ($\lambda_{\text {ex }}=325 \mathrm{~nm}$). All measurements were carried out in 0.1 mM anhydrous THF solutions at room temperature.

Figure S5. Electronic circular dichroism (ECD) spectra of the two enantiomers of the $\operatorname{CsEr}(\mathrm{hfbc})_{4}$ complex with total absorption traced in the background (in grey). All samples were measured in 3.2 mM THF solutions with a 0.01 cm path length at room temperature.

Figure S6. The NIR-CD (dashed lines) and NIR-CPL (solid lines) of the two enantiomers of $\operatorname{CsEr}(\mathrm{hfbc})_{4}$.

Figure S8. Total luminescence intensity of the two circularly polarized components, where I_{L} and I_{R} are the left- and right-components respectively. Left: The emission spectra of each polarization for $(+)-\operatorname{CsEr}(\mathrm{hfbc})_{4}$. Right: The emission spectra of each polarization for $(-)-\operatorname{CsEr}(\mathrm{hfbc})_{4}$.

Figure S9. The $\operatorname{CsEr}(\mathrm{hfbc})_{4}$ decay curve of the ${ }^{4} \mathrm{I}_{13 / 2}$ excited state of Er^{3+} along with the reconvolution fitting. Measurements carried out in 0.1 mM THF solutions at room temperature.

Spectra for $\left[\text { TMG }-\mathrm{H}^{+}\right]_{3} \operatorname{Er}(\text { BINOLate })_{3}$

Figure S10. Absorption spectra of $\left[T M G-\mathrm{H}^{+}\right]_{3} \operatorname{Er}(\text { BINOLate })_{3}$ in black, with the excitation spectrum in red superimposed ($\left.\lambda_{\text {em }}=1485 \mathrm{~nm}\right)$. The emission spectrum is shown in blue ($\lambda_{\text {ex }}$ $=365 \mathrm{~nm}$). All measurements were carried out in 1 mM anhydrous THF solutions at room temperature.

Figure S11. Electronic circular dichroism (ECD) spectra of the two enantiomers of the [TMG- $\left.\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOL} \text { ate })_{3}$ complex with total absorption traced in the background (in grey). All samples were measured in 0.6 mM anhydrous THF solutions with a 0.01 cm path length at room temperature.

Figure S12. The NIR-CD (dashed lines) and NIR-CPL (solid lines) of the two enantiomers of $\left[T M G-\mathrm{H}^{+}\right]_{3} E r(B I N O L a t e){ }_{3}$.

Figure S13. Left: The $\mathrm{gabs}^{-v s}$-wavelength plot for each enantiomer of $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$. Right: The glum-vs-wavelength plot for each enantiomer of $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$.

Figure S14. Total luminescence intensity of the two circularly polarized components, where I_{L} and I_{R} are the left- and right-components respectively. Left: The emission spectra of each polarization for $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}((\mathrm{R})-\mathrm{BINOLate})_{3}$. Right: The emission spectra of each polarization for $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \operatorname{Er}((\mathrm{~S})-\mathrm{BINOLate})_{3}$.

Figure S15. The $\left[\mathrm{TMG}-\mathrm{H}^{+}\right]_{3} \mathrm{Er}(\mathrm{BINOLate})_{3}$ decay curve of the ${ }^{4} \mathrm{I}_{13 / 2}$ excited state of Er^{3+} along with the reconvolution fitting. Measurements carried out in 1 mM THF solutions at room temperature.

Spectra for Er(NTA) ${ }_{3}$ PhPyBox

Figure S16. Absorption spectra of $\operatorname{Er}(\mathrm{NTA})_{3}$ PhPyBox in black, with the excitation spectrum in red superimposed $\left(\lambda_{\text {em }}=1530 \mathrm{~nm}\right)$. The emission spectrum is shown in blue $\left(\lambda_{\text {ex }}=345\right.$ nm). All measurements were carried out in 0.1 mM anhydrous THF solutions at room temperature.

Figure S17. Electronic circular dichroism (ECD) spectra of the two enantiomers of the $\operatorname{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$ complex with total absorption traced in the background (in grey). All samples were measured in 1 mM anhydrous THF solutions with a 0.01 cm path length at room temperature.

Figure S18. The NIR-CD (dashed lines) and NIR-CPL (solid lines) of the two enantiomers of Er(NTA) ${ }_{3} \mathrm{PhPyBox}$.

Figure S19. Left: The gabs -vs-wavelength plot for each enantiomer of $\operatorname{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$. Right: The $\mathrm{glum}_{\text {-vs-wavelength plot for each enantiomer of Er(NTA) }}^{3}$ PhPyBox.

Figure S20. Total luminescence intensity of the two circularly polarized components, where I_{L} and I_{R} are the left- and right-components respectively. Left: The emission spectra of each polarization for $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{R}, \mathrm{R})$-PhPyBox. Right: The emission spectra of each polarization for $\operatorname{Er}(\mathrm{NTA})_{3}(\mathrm{~S}, \mathrm{~S})$-PhPyBox

Figure S21. The $\operatorname{Er}(\mathrm{NTA})_{3} \mathrm{PhPyBox}$ decay curve of the ${ }^{4} \mathrm{I}_{13 / 2}$ excited state of Er^{3+} along with the reconvolution fitting. Measurements carried out in 1 mM THF solutions at room temperature.

 nm). All measurements were carried out in 0.1 mM anhydrous THF solutions at room temperature.

Figure S23. Electronic circular dichroism (ECD) spectra of the two enantiomers of the $\mathrm{Er}(\mathrm{NTA})_{3}{ }^{\mathrm{i} P r P y B o x}$ complex with total absorption traced in the background In grey). All samples were measured in 0.9 mM anhydrous THF solutions with a 0.01 cm path length at room temperature.

Figure S24. The $\operatorname{Er}(\mathrm{NTA})_{3}{ }^{i} \operatorname{PrPyBox}$ decay curve of the ${ }^{4} \mathrm{I}_{13 / 2}$ excited state of Er^{3+} along with the reconvolution fitting. Measurements carried out in 1 mM THF solutions at room temperature.

Notes and references

1 F. Zinna, U. Giovanella and L. D. Bari, Adv. Mater., 2015, 27, 1791-1795.
2 J. R. Robinson, X. Fan, J. Yadav, P. J. Carroll, A. J. Wooten, M. A. Pericàs, E. J. Schelter and P. J. Walsh, J. Am. Chem. Soc., 2014, 136, 80348041.

3 O. G. Willis, F. Zinna, G. Pescitelli, C. Micheletti and L. Di Bari, Dalton Trans., 2022, 51, 518-523.
4 F. Zinna, L. Arrico and L. Di Bari, Chem. Commun., 2019, 55, 6607-6609.
5 S. Meshkova, Z. Topilova, D. Bolshoy, S. Beltyukova, M. Tsvirko and V. Venchikov, Acta Phys. Pol. A, 1999, 95, 983-990.
6 C. L. Maupin, R. S. Dickins, L. G. Govenlock, C. E. Mathieu, D. Parker, J. A. G. Williams and J. P. Riehl, J. Phys. Chem. A, 2000, 104, 67096717.

7 L. Arrico, L. Di Bari and F. Zinna, Chem. - Eur. J., 2021, 27, 2920-2934.

