Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2023

Supporting Information:

Phase evolution and fluorescence stability of CsPb₂Br₅ microwires and its

application to stable and sensitive photodetectors

Ning Jiang^a, Jinwei Wei^a, Mingjie Lv^a, Youzhuang Rong^a, Changmin Wang^a, Yao Liu^a, Gongxiang Wei^a, Xin Han^b, Yuzhu Wang^c, Yunyan Liu^{a*}, Huiqiang Liu^{a*}

^a School of Physics and Optoelectronic Engineering, Shandong University of Technology, Zibo, 255049, China.

^b School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, China

^c Shanghai Synchrotron Radiation Facility (SSRF), Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China

*Corresponding authors.

E-mail addresses: Prof. Yunyan Liu (liuyunyan@sdut.edu.cn), Prof. Huiqiang Liu (liuhq@sdut.edu.cn).

Experimental

Synthesis of CsPb₂Br₅ microwires

Preparation of $PbBr_2$ microwires: All experimental reactions were carried out under air conditions. 20 mg of $PbBr_2$ powder was dispersed into 10 mL of deionized water and sonicated for 30 min, and then was heated at 150°C for 1 h to prepare a supersaturated aqueous solution. 40 μ L of $PbBr_2$ solution was added dropwise to the substrate and left for 3h to obtain white $PbBr_2$ microwires.

Synthesis of $CsPb_2Br_5$ microwires: The CsBr supersaturated solution was prepared by dissolving 10 mg of CsBr powder in 10 mL of ethanol solution. 40 μ L CsBr solution was dropped onto the PbBr₂ microwires to form CsPb₂Br₅ microwires.

Photodetector Preparation

The substrates were washed with acetone, ethanol and deionized water. The Ti/Au interdigital electrode were deposited onto the glass substrate using electron beam evaporation to a thickness of 250 nm. The interdigital electrode has a finger length of 2 mm, a finger width of 40 μ m and a finger spacing of 65 μ m. The interdigital electrode will be kept in Ar at 200 °C for 30 min to reduce the interfacial contact and create a good ohmic contact resistance. The prepared CsPb₂Br₅ microwire photodetectors were synthesized on Ti/Au coated substrates.

Characterization of CsPb₂Br₅

Field emission transmission electron microscopy (FETEM, Tecnai G2 F20 S-TWIN) and Xray diffraction (XRD, Bruker AXS D8 ADVANCE) were used to examine the crystallographic composition and the structure of the samples. The absorption spectrum was measured using a UV-3600 Plus spectrophotometer (SHIMADZU). The Raman spectrum was obtained using a scanning probe microscope (Multimode NS3a) with an excitation wavelength of 532 nm. Steady-state photoluminescence (PL) was excited by a 405 nm wavelength light using a spectrometer (PG2000 Pro, Ideaoptics Instruments Co., Ltd.). Wide-angle X-ray scattering (WAXS) images (Mar165CCD) were recorded at the BL16B1 beamline of the Shanghai Synchrotron Radiation Facility (SSRF). Time-resolved fluorescence spectral mapping was carried out using a Nanofinder FLEX2 confocal optical microscope (Tokyo Instrument Inc.). Current–voltage (I-V) curves of the CsPb₂Br₅ microwires were recorded using a source meter (Keithley 2400). The on/off photocurrent ratio was obtained using an electrochemical workstation (CHI 660E). The optical and electrical features of the prepared photodetectors were investigated at 5 V bias by using 405 nm laser irradiation.

Fig. S1 PbBr₂ at the substrate temperature of 60 °C.

Crystallization time

Fig. S2 Schematic diagram of supersaturation versus growth time when the substrate temperature is 20 °C and 40 °C, respectively.

Fig. S3 HRTEM image of the edge of the CsPb₂Br₅ nanowire.

Fig. S4 The enlarged image of the (206) peak of $CsPb_2Br_5$ (a), and the Cu substrate diffraction peak (b).

Fig. S5 XRD pattern of CsPb₂Br₅ microwires annealed at 400 °C in N₂ atmosphere.

Fig.S6 (a) The diagram of the light absorption and formation of photogenerated carriers of the photoconductive type detector. (b) The test diagram of photoconductive type detector.

Fig. S7 The *ca*. R and EQE spectral response of the PD with the wavelengths ranged from 400 to 800 nm with a light intensity of 4.73 mW mm⁻² and a bias voltage of 5 V.

Table S1. Fluorescence decay analysis parameters corresponding to the monitored red area of CsPb₂Br₅ microwire in Fig. 6 (e-h) at different temperatures.

	$ au_l(\mathrm{ps})$	$\tau_2(ps)$	$ au_{ave}(ps)$
25°C	899.99(92.19%)	4984.5(7.81%)	12183
150°C	70.16(56.05%)	253.8(43.95%)	150.87
300°C	315.74(85.35%)	797.9(14.65%)	386.38
400°C	472.32(54.6%)	2338.7(45.4%)	1319.66

Table S2. Comparison of photoelectric performance of different representative lead halide perovskite photodetectors.

	rise time(ms)	decay time(ms)	R(mA/W)	D*(Jones)	[Ref.]
CsPb ₂ Br ₅ microwires	90	43	640	$6.07*10^{10}$	this work
CsPb ₂ Br ₅ nanosheets	43	85	75.4	$1.33*10^{10}$	[1]
CsPb ₂ Br ₅ nano-/micro-sheets	180	130	20	1012	[2]
CsPb ₂ Br ₅ flake single crystals	40	120	25.1		[3]
CsPbBr3 micro-nanowires	301	242	6440	2.88*1012	[4]
CsPbBr3 microwires	275	550	7660	4.05*1012	[5]
CsPbBr3 nanosheets	48	18	44.9	6.4*108	[6]
CsPbBr3 crystals	300	300	2100		[7]
MAPbBr3 milliwires	407	895			[8]
MAPbBr3 nanosheets	103	87	27	6.38*10 ⁸	[9]
MAPbBr3 single crystals	3500	100	6.1		[10]

Reference

- 1. R. Wang, Z. Li, S. Li, P. Wang, J. Xiu, G. Wei, H. Liu, N. Jiang, Y. Liu and M. Zhong, ACS Appl Mater Interfaces, 2020, 12, 41919-41931.
- 2. R. Zhi, J. Hu, S. Yang, C. Perumal Veeramalai, Z. Zhang, M. I. Saleem, M. Sulaman, Y. Tang and B. Zou, *J. Alloys Compd.*, 2020, **824**.
- 3. Z. Zhang, Y. Zhu, W. Wang, W. Zheng, R. Lin and F. Huang, *Journal of Materials Chemistry C*, 2018, **6**, 446-451.
- G. Tong, M. Jiang, D. Y. Son, L. Qiu, Z. Liu, L. K. Ono and Y. Qi, ACS Appl Mater Interfaces, 2020, 12, 14185-14194.
- 5. G. Tong, M. Jiang, D. Y. Son, L. K. Ono and Y. Qi, Adv. Funct. Mater., 2020, 30.
- W. Deng, H. Huang, H. Jin, W. Li, X. Chu, D. Xiong, W. Yan, F. Chun, M. Xie, C. Luo, L. Jin, C. Liu, H. Zhang, W. Deng and W. Yang, *Advanced Optical Materials*, 2019, 7.
- J. H. Cha, J. H. Han, W. Yin, C. Park, Y. Park, T. K. Ahn, J. H. Cho and D. Y. Jung, J. Phys. Chem. Lett., 2017, 8, 565-570.
- F. Chen, C. Xu, Q. Xu, Y. Zhu, F. Qin, W. Zhang, Z. Zhu, W. Liu and Z. Shi, ACS Appl Mater Interfaces, 2018, 10, 25763-25769.
- M.-M. Liu, L.-L. Zhou, S.-F. Li, F.-X. Liang, Y. Xing, J.-Y. Li, C. Fu, Y.-Z. Zhao, D. Wu and L.-B. Luo, *IEEE Transactions on Electron Devices*, 2022, 69, 5590-5594.
- 10. Y. T. Li, G. Y. Gou, L. S. Li, H. Tian, X. Cong, Z. Y. Ju, Y. Tian, X. S. Geng, P. H. Tan, Y. Yang and T. L. Ren, *iScience*, 2018, 7, 110-119.